Treffer 61 - 80 von 15.425

61

Educational data mining for predicting students’ academic performance using machine learning algorithms
Dabhade, Pranav ; Agarwal, Ravina ; Alameen, K.P. ; et al.
In Materials Today: Proceedings 2021 47 Part 15:5260-5267

Fachzeitschrift
Zu den Favoriten
62

Preprocessing and Analyzing Raman Spectra Using Python †.
Pavlou, Eleftherios ; Kourkoumelis, Nikolaos
Engineering Proceedings; 2023, Vol. 56, p28, 5p

RAMAN spectra PYTHON programming langu... INTERMOLECULAR interacti... LIFE sciences BIOENGINEERING MACHINE learning
Fachzeitschrift
Zu den Favoriten
63

Shopping trends: a machine learning approach to recommendation systems to improve customer loyalty
Lacerda, Paulo Henrique Alves de ; Fernandes, João M. ; Universidade do Minho
urn:tid:203231384

Recommendation system Machine learning Clustering Web application Python Loyalty program
Zu den Favoriten
64

Chapter 3: Classifiers in Machine Learning
Python 3 and Machine Learning Using ChatGPT/GPT-4. :65-86

Buch
Zu den Favoriten
65

Local mean suppression filter for effective background identification in fluorescence images
Kochetov, Bogdan ; Uttam, Shikhar
In Computers in Biology and Medicine June 2025 192 Part B

Fachzeitschrift
Zu den Favoriten
66

[¬Re] Reproducing 'Fair Selective Classification via Sufficiency'
Peters, Nils ; Crosbie, Joy ; Hull, Rachel Van\'T ; et al.

machine learning classification rescience c sufficiency Python 3 selective classification
Fachzeitschrift
Zu den Favoriten
67

Comparison of machine learning-based algorithms using corneal asymmetry vs. single-metric parameters for keratoconus detection.
Prakash G ; Perera C ; Jhanji V
Publisher: Springer-Verlag Country of Publication: Germany NLM ID: 8205248 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1435-702X (Electronic) Linking ISSN: 0721832X NLM ISO Abbreviation: Graefes Arch Clin Exp Ophthalmol Subsets: MEDLINE

Humans Retrospective Studies Case-Control Studies Corneal Topography metho... ROC Curve Cornea
Fachzeitschrift
Zu den Favoriten
68

Deep-Learning Application to in silico Drug Design
Gomes, António José Preto Martins

Aprendizagem automática Aprendizagem profunda Desenho de fármacos Inteligência Artificial Proteínas Artificial Intelligence
Zu den Favoriten
69

Toolbox for Multimodal Learn (scikit-multimodallearn)
Benielli, Dominique ; Capponi, Cécile ; Koço, Sokol ; et al.

multimodal multiview Python 3 [INFO.INFO-LG] Computer... algorithms Sklearn
Fachzeitschrift
Zu den Favoriten
70

A Python library for agnostic feature selection and explainability of Machine Learning spectroscopic problems
Grau-Luque, Enric ; orcid:0000-0002-8357- ; Becerril-Romero, Ignacio ; et al.

Spectroscopy Machine Learning Explainability and inter... Classification and regre...
Fachzeitschrift
Zu den Favoriten
71

A Deep Learning Model for Detection Cancer in Breast
T.V. Ramana
Journal of Nursing Research,Patient Safety and Practise. :1-7

3. Good health
Fachzeitschrift
Zu den Favoriten
72

Python Data Driven framework for acceleration of Phase-Field simulations[Formula presented]
Fetni, Seifallah ; Delahaye, Jocelyn ; Habraken, Anne ; et al.
Software Impacts, 17, 100563 (2023-09)

Deep learning Image generation and pro... LSTM PCA Python development Software
Fachzeitschrift
Zu den Favoriten
73

Risk Stratification of Hepatocarcinogenesis Using a Deep Learning Based Clinical, Biological and Ultrasound Model in High-risk Patients (STARHE)
Risk Stratification of Hepatocarcinogenesis Using a Deep Learning Based Clinical, Biological and Ultrasound Model in High-risk Patients
Cadier B, Bulsei J, Nahon P, Seror O, Laurent A, Rosa I, Layese R, Costentin C, Cagnot C, Durand-Zaleski I, Chevreul K; ANRS CO12 CirVir and CHANGH groups. Early detection and curative treatment of hepatocellular carcinoma: A cost-effectiveness analysis in France and in the United States. Hepatology. 2017 Apr;65(4):1237-1248. doi: 10.1002/hep.28961. Epub 2017 Feb 8.
Costentin CE, Layese R, Bourcier V, Cagnot C, Marcellin P, Guyader D, Pol S, Larrey D, De Ledinghen V, Ouzan D, Zoulim F, Roulot D, Tran A, Bronowicki JP, Zarski JP, Riachi G, Cales P, Peron JM, Alric L, Bourliere M, Mathurin P, Blanc JF, Abergel A, Serfaty L, Mallat A, Grange JD, Attali P, Bacq Y, Wartelle C, Dao T, Thabut D, Pilette C, Silvain C, Christidis C, Nguyen-Khac E, Bernard-Chabert B, Zucman D, Di Martino V, Sutton A, Letouze E, Imbeaud S, Zucman-Rossi J, Audureau E, Roudot-Thoraval F, Nahon P; ANRS CO12 CirVir Group. Compliance With Hepatocellular Carcinoma Surveillance Guidelines Associated With Increased Lead-Time Adjusted Survival of Patients With Compensated Viral Cirrhosis: A Multi-Center Cohort Study. Gastroenterology. 2018 Aug;155(2):431-442.e10. doi: 10.1053/j.gastro.2018.04.027. Epub 2018 May 3.
Ioannou GN, Green P, Kerr KF, Berry K. Models estimating risk of hepatocellular carcinoma in patients with alcohol or NAFLD-related cirrhosis for risk stratification. J Hepatol. 2019 Sep;71(3):523-533. doi: 10.1016/j.jhep.2019.05.008. Epub 2019 May 28.
Audureau E, Carrat F, Layese R, Cagnot C, Asselah T, Guyader D, Larrey D, De Ledinghen V, Ouzan D, Zoulim F, Roulot D, Tran A, Bronowicki JP, Zarski JP, Riachi G, Cales P, Peron JM, Alric L, Bourliere M, Mathurin P, Blanc JF, Abergel A, Chazouilleres O, Mallat A, Grange JD, Attali P, d'Alteroche L, Wartelle C, Dao T, Thabut D, Pilette C, Silvain C, Christidis C, Nguyen-Khac E, Bernard-Chabert B, Zucman D, Di Martino V, Sutton A, Pol S, Nahon P; ANRS CO12 CirVir group. Personalized surveillance for hepatocellular carcinoma in cirrhosis - using machine learning adapted to HCV status. J Hepatol. 2020 Dec;73(6):1434-1445. doi: 10.1016/j.jhep.2020.05.052. Epub 2020 Jun 29.
Kitamura S, Iishi H, Tatsuta M, Ishikawa H, Hiyama T, Tsukuma H, Kasugai H, Tanaka S, Kitamura T, Ishiguro S. Liver with hypoechoic nodular pattern as a risk factor for hepatocellular carcinoma. Gastroenterology. 1995 Jun;108(6):1778-84. doi: 10.1016/0016-5085(95)90140-x.
Tarao K, Hoshino H, Shimizu A, Ohkawa S, Harada M, Nakamura Y, Ito Y, Tamai S, Okamoto N. Patients with ultrasonic coarse-nodular cirrhosis who are anti-hepatitis C virus-positive are at high risk for hepatocellular carcinoma. Cancer. 1995 Mar 15;75(6):1255-62. doi: 10.1002/1097-0142(19950315)75:63.0.co;2-q.
Caturelli E, Castellano L, Fusilli S, Palmentieri B, Niro GA, del Vecchio-Blanco C, Andriulli A, de Sio I. Coarse nodular US pattern in hepatic cirrhosis: risk for hepatocellular carcinoma. Radiology. 2003 Mar;226(3):691-7. doi: 10.1148/radiol.2263011737. Epub 2003 Jan 24.
Dana J, Agnus V, Ouhmich F, Gallix B. Multimodality Imaging and Artificial Intelligence for Tumor Characterization: Current Status and Future Perspective. Semin Nucl Med. 2020 Nov;50(6):541-548. doi: 10.1053/j.semnuclmed.2020.07.003. Epub 2020 Aug 2.
Yala A, Schuster T, Miles R, Barzilay R, Lehman C. A Deep Learning Model to Triage Screening Mammograms: A Simulation Study. Radiology. 2019 Oct;293(1):38-46. doi: 10.1148/radiol.2019182908. Epub 2019 Aug 6.
Dohan A, Gallix B, Guiu B, Le Malicot K, Reinhold C, Soyer P, Bennouna J, Ghiringhelli F, Barbier E, Boige V, Taieb J, Bouche O, Francois E, Phelip JM, Borel C, Faroux R, Seitz JF, Jacquot S, Ben Abdelghani M, Khemissa-Akouz F, Genet D, Jouve JL, Rinaldi Y, Desseigne F, Texereau P, Suc E, Lepage C, Aparicio T, Hoeffel C; PRODIGE 9 Investigators and PRODIGE 20 Investigators. Early evaluation using a radiomic signature of unresectable hepatic metastases to predict outcome in patients with colorectal cancer treated with FOLFIRI and bevacizumab. Gut. 2020 Mar;69(3):531-539. doi: 10.1136/gutjnl-2018-316407. Epub 2019 May 17.
Savadjiev P, Chong J, Dohan A, Agnus V, Forghani R, Reinhold C, Gallix B. Image-based biomarkers for solid tumor quantification. Eur Radiol. 2019 Oct;29(10):5431-5440. doi: 10.1007/s00330-019-06169-w. Epub 2019 Apr 8.
LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015 May 28;521(7553):436-44. doi: 10.1038/nature14539.
European Association for the Study of the Liver. Corrigendum to "EASL Clinical Practice Guidelines: Management of hepatocellular carcinoma" [J Hepatol 69 (2018) 182-236]. J Hepatol. 2019 Apr;70(4):817. doi: 10.1016/j.jhep.2019.01.020. Epub 2019 Feb 7. No abstract available.
Dana J, Meyer A, Paisant A, Rode A, Sartoris R, Seror O, Cassinotto C, Milot L, Gregory J, Coeur J, Lebigot J, Schembri V, Villeret F, Takeda AN, Ronot M, Vilgrain V, Baumert TF, Gallix B, Padoy N, Nahon P. Improving risk stratification and detection of early HCC using ultrasound-based deep learning models. JHEP Rep. 2025 Jul 5;7(10):101510. doi: 10.1016/j.jhepr.2025.101510. eCollection 2025 Oct.

Report
Zu den Favoriten
74

Pyeo: A Python package for near-real-time forest cover change detection from Earth observation using machine learning
JF Roberts ; R Mwangi ; F Mukabi ; et al.

Earth observation Machine learning Change detection Forest monitoring
Fachzeitschrift
Zu den Favoriten
75

direpack : a Python 3 package for state-of-the-art statistical dimensionality reduction methods
Menvouta, Emmanuel Jordy ; Serneels, Sven ; Verdonck, Tim
23527110 ; SoftwareX

Computer. Automation
Fachzeitschrift
Zu den Favoriten
76

Predicting major adverse cardiovascular events after orthotopic liver transplantation using a supervised machine learning model: A cohort study.
Soldera J ; Corso LL ; Rech MM ; et al.
Publisher: Baishideng Publishing Group Country of Publication: United States NLM ID: 101532469 Publication Model: Print Cited Medium: Print ISSN: 1948-5182 (Print) NLM ISO Abbreviation: World J Hepatol Subsets: PubMed not MEDLINE

Fachzeitschrift
Zu den Favoriten
77

Implementation of machine learning models as a quantitative evaluation tool for preclinical studies in dental education.
Oguzhan, Aybeniz ; Peskersoy, Cem ; Devrimci, Elif Ercan ; et al.
Journal of Dental Education. Mar2025, Vol. 89 Issue 3, p383-397. 15p.

Fachzeitschrift
Zu den Favoriten
78

Chapter AI and Machine Learning to extend Meteo-Marine Station Observations into the Future
Azzopardi, Joel

Machine Learning Artificial Intelligence Transfer Learning Meteorology Prediction
E-Book
Zu den Favoriten
79

Representing DNA for Machine Learning Algorithms: A Primer on One-Hot, Binary, and Integer Encodings
Yash Munnalal Gupta ; Satwika Nindya Kirana ; Somjit Homchan
5

Science Instruction Teaching Methods Genetics Molecular Biology Computation Data
Fachzeitschrift
Zu den Favoriten
80

Optimizing Credit Scoring Models in Face of Global Economic Uncertainty: A Comprehensive Risk Analysis in Banking loans
Susana, David Manuel Pereira ; Bravo, Jorge Miguel Ventura ; RUN

Analytical Models Banking Machine Learning Credit Risk Credit Scoring Loan Defaults
Zu den Favoriten

Filter