Treffer 41 - 60 von 161

41

Python Parallel Programming Cookbook
Giancarlo Zaccone ; Giancarlo Zaccone ; Giancarlo Zaccone ; et al.
2019

E-Ressource
Zu den Favoriten
42

Python Parallel Programming Cookbook
Giancarlo Zaccone ; Giancarlo Zaccone ; Giancarlo Zaccone ; et al.
2019

E-Ressource
Zu den Favoriten
43

Python Parallel Programming Cookbook
Giancarlo Zaccone ; Giancarlo Zaccone ; Giancarlo Zaccone ; et al.
2019

E-Ressource
Zu den Favoriten
44

scikit-learn Cookbook Ed. 2
Avila, Julian ; Hauck, Trent ; Avila, Julian ; et al.

E-Ressource
Zu den Favoriten
46

Streamlit for Data Science
Tyler Richards ; Adrien Treuille ; Tyler Richards ; et al.
2023

E-Ressource
Zu den Favoriten
47

Fault Diagnosis Method for Transformer Winding Based on the Load Normalized Lissajous Graphical Analysis of Leakage Magnetic Field
Bowen ZHANG ; Jian FENG ; Bowen WANG ; et al.
工程科学与技术, Vol 56, Pp 25-33 (2024)

power transformer fluctuation of load winding fault leakage magnetic field Lissajous graphics convolutional neural net...
Fachzeitschrift
Zu den Favoriten
48

Computación Evolutiva Descentralizada de Modelo Híbrido usando Blockchain y Prueba de Trabajo de Optimización
Consultor de tesis ; Pabón Burbano, María Constanza ; Bastidas Caicedo, Harvey Demian ; et al.
K. Stanley, "Evolving Neural Networks through Augmenting Topologies," Evolutionary Computation, vol. 10 , no. 2, pp. 99-127 , 2002.; L. Wu, "Magnetic Resonance Brain Image Classification by an Improved Artificial Bee Colony Algorithm," Progress in Electromagnetics Research, vol. 116, pp. 65-79 , 2011.; J. Kennedy and R. Eberhart, "Particle Swarm Optimization," in Proceedings of IEEE International Conference on Neural Networks, 1995.; M. Wa, "Genetic Algorithm and its application to Big Data Analysis," International Journal of Scientific & Engineering Research,, vol. 5, no. 1, 2014.; P. Verbancsics, "Classifying Maritime Vessels from Satellite Imagery with HyperNEAT," in Proceedings of the Companion Publication of the 2015 on Genetic and Evolutionary Computation Conference - GECCO Companion, New York, USA, 2015.; Y.-J. Gong, "Distributed evolutionary algorithms and their models: A survey of the state-of-the-art.," Applied Soft Computing, 2015.; J. Lienig, "A parallel genetic algorithm for performance-driven VLSI routing," IEEE Trans. Evol. Comput, vol. 1, no. 1, pp. 29-39, 1997.; H. Piereval, "Distributed evolutionary algorithms for simulation optimization," IEEE Trans Sys. Man. Cybern. , vol. 30, no. 1, pp. 15-24, 2000.; K.C.Tan, "Automating the drug-sheduling of cancer chemotherapy via evolutionary computation," Artif.Intellig.Med., vol. 25, no. 2, pp. 169-185, 2002.; J. Creput, "Automatic mesh generation for mobile network dimensioning using evolutionary approach," Evol.Comput, vol. 9, no. 1, pp. 18-30, 2005.; J.Liu, "An evolutionary autonomous agents approach to image feature extraction.," IEEE Trans. Evol. Comput., vol. 1, no. 2, pp. 141-158, 1997.; M. Epitropakis, "Hardware-friendly higher-order neural network training using distributed evolutionary algorithms.," Appl. Soft. comput. , vol. 10, no. 2, pp. 398-408, 2010.; L. Kattan, "Distributed evolutionary estimation of of dynamic traffic origin/destination," in 13th IEEE Conference on Intelligent Transport Systems, 2010.; J. Noyima, "Ensemble classifier design by parallel implementation of genetic fuzzy rule selection for large datasets.," in IEEE Congress on Evolutionary Computation, 2010.; F. Rainville, "DEAP: A Python Framework for Evolutionary Algorithms," in GECCO, 2012.; M. Linder, "Grid computing in Matlab for solving evolutionary algorithms," in Technical Computing Bratislava, Bratislava, 2012.; J. Kennedy and R. Eberhart, "Particle Swarm Optimization," in Proceedings of IEEE International Conference on Neural Networks. , 1995.; D. D. Karaboga, "An Idea Based On Honey Bee Swarm for Numerical Optimization," Erciyes University, 2005.; M. Dorigo, "Distributed Optimization by Ant Colonies," in Première conférence européenne sur la vie artificielle, Paris, France, 1991.; C. Huang, "A hybrid stock selection model using genetic algorithms and support vector regression," Applied Soft Computing, vol. 12, p. 807–81, 2012.; E. Levy, "Genetic algorithms and deep learning for automatic painter classification," in conference on Genetic and evolutionary computation - GECCO ’14 , New York, New York, USA, 2014.; E. Levy, "Genetic algorithms and deep learning for automatic painter classification," in Proceedings of the 2014 conference on Genetic and evolutionary computation - GECCO ’14 , New York, New York, USA, 2014.; S. Whiteson, "Evolutionary Function Approximation for Reinforcement Learning," Journal of Machine Learning Research, vol. 8, pp. 877-917, 2006.; R. B. Greve, "Evolving Neural Turing Machines for Reward-based Learning," in Genetic and Evolutionary Computation Conference (GECCO), Denver, Colorado, USA, 2016.; A. Santoro, "One-shot Learning with Memory-Augmented Neural Networks," Cornell University , Ithaca, NY, USA, 2016.; D. Izzo, "The generalized isalnd model," Studies in Computational Intelligence, vol. 415, pp. 151-169, 2012.; G. Folino, "P-CAGE: An Environment for Evolutionary Computation in Peer-to-Peer Systems," in European Conference on Genetic Programming, Berlin, 2006.; A. L. Ian Scriven, "Decentralised distributed multiple objective particle swarm optimisation using peer to peer networks," in IEEE World Congress on Evolutionary Computation, 2008. CEC 2008, 2008.; A. L. C. Fernando Silva, "odNEAT: An Algorithm for Decentralised Online Evolution of Robotic Controllers," Evolutionary Computation , vol. 23, no. 3, pp. 421-449, 2015.; D. Jakobović, "ECF - Evolutionary Computation Framework," University of Zagreb,; M. A. García-Sánchez P., "A Methodology to Develop Service Oriented Evolutionary Algorithms," Intelligent Distributed Computing VIII, vol. 570, 2015.; S. Cahon, "ParadisEO: A Framework for the Reusable Design of Parallel and Distributed Metaheuristics," Journal of Heuristics, vol. 10, no. 3, pp. 357-380, 2004.; D. R. White, "Software review: the ECJ toolkit," Genetic Programming and Evolvable Machines, vol. 13, no. 1, pp. 65-67, 2011.; M. G. Arenas, "A Framework for Distributed Evolutionary Algorithms," Lecture Notes on Computer Science, vol. 2439, pp. 665-675, 2002.; J. L. J. Laredo, "Resilience to churn of a peer-to-peer evolutionary algorithm," International Journal of High Performance Systems Architecture, vol. 1, no. 4, pp. 260-268, 2008.; C. Rohrs, "Query Routing for the Gnutella Network," Lime Wire LLC, 2002.; R. Fielding, "Chapter 5: Representational State Transfer (REST)," in Architectural Styles and the Design of Network-based Software Architectures, Irvine, Ca, University of California, 2000.; P. C. R. K. Len Bass, Software Architecture in Practice - Second Edition, Addison Wesley, 2003.; S. Nakamoto, "Bitcoin: A Peer-to-Peer Electronic Cash Syste," bitcoin.org, vol. Retrieved 28 April 2016.; H. C. M. Kalodner, "An empirical study of Namecoin and lessons for decentralized namespace design," in Workshop on the oconomics of information security, Delft, The Netherlands, 2015.; D. Carboni, "Feedback based Reputation on top of the Bitcoin Blockchain," Retrieved from; E. Foundation, "Ethereum's white paper," Ethereum Foundation, 2014.; G. N. O. Zyskind, "Decentralizing Privacy: Using Blockchain to Protect Personal Data," IEEE Security and Privacy Workshops , p. 180–184, 2015.; S. Nakamoto, "Bitcoin: A Peer-to-Peer Electronic Cash System," in Web. bitcoin.org. Retrieved 28 April 2014, 2008.; S. King, "Primecoin: Cryptocurrency with Prime Number Proof-of-Work," 2013 .; A. R. Marshall Ball, "Proofs of Useful Work," Cryptology ePrint Archive, 2017.; R. A. G. Barto, Reinforcement Learning: An Introduction, Cambridge, Massachusetts: The MIT Press, 2005.; M. S. J. Moody, "Learning to trade via direct reinforcement," IEEE Transactions on Neural Networks, vol. 12, no. 4,, 2001; C. WATKINS, "Q,-Learning," Machine Learning, vol. 8, 1992.; R. M. Kenneth O. Stanley, "Efficient Reinforcement Learning through Evolving Neural Network Topologies," in Genetic and Evolutionary Computation Conference , San Francisco, CA, 2002.; C. Igel, "Neuroevolution for reinforcement learning using evolution strategies," in Congress on Evolutionary Computation, 2003.; V. Heidrich-Meisner, "Neuroevolution strategies for episodic reinforcement learning," Journal of Algorithms, vol. 64, no. 4, pp. 152-168, 2009.; D. Lessin, "Open-ended behavioral complexity for evolved virtual creatures," in 15th annual conference on Genetic and evolutionary computation, Amsterdam, The Netherlands, 2013.; G. B. a. V. Cheung, "OpenAI Gym," Arxiv, vol. arXiv:1606.01540, 2016.; N. G. L. Iker Zamora, "Extending the OpenAI Gym for robotics: a toolkit for reinforcement learning using ROS and Gazebo," Whitepaper, 2016.; A. H. David Silver, "Mastering the game of Go with deep neural networks and tree 62 search," Nature, vol. 529, no. 7587, pp. 484-489, 2016.; K. K. Volodymyr Mnih, "Human-level control through deep reinforcement learning," Nature, vol. 518, no. 7540, pp. 529-533, 2015.; U. B. o. E. Analysis, "U.S. INTERNATIONAL TRADE IN GOODS AND SERVICES - December 2013," U.S. Department of Commerce, Washington, DC 20230, 2013.; E. Department, "Triennial Central Bank Survey of foreign exchange and OTC derivatives markets in 2016," Bank For International Settlements, Basel, Switzerland,; Investopedia, "Forex Broker Definition,"; Investopedia, "Margin Call Definition,"; Investopedia, "What is a Spread,"; Investopedia, "Leverage Definition,"; A. P. CHABOUD, "Rise of the Machines: Algorithmic Trading in the Foreign Exchange Market," Journal of the American Finance Association, vol. 69, no. 5, p. 2045–2084 , 201.; M. A. H. Dempster, "An automated FX trading system using adaptive reinforcement learning," Expert Systems with Applications, vol. 30, no. 3, pp. 543-552, 2006.; HistData.com, "Free Forex Historical Data Repository,"; R. T. Fielding, "Chapter 5: Representational State Transfer (REST)," in Architectural Styles and the Design of Network-based Software Architectures, Irvine, University of California, 2000.; H. W. Group, " SOAP: Simple Object Access Protocol," [Online]. Available:; e. a. Don Box, "Simple Object Access Protocol (SOAP) 1.1," W3C, 8 May 2000. [Online]. Available:; J.-R. W. Group, "JSON-RPC 2.0 Specification," JSON-RPC Working Group, 04 01 2013. [Online]. Available:; R. Mikkulainen and J. e. a. Liang, "Evolving Deep Neural Netwokrs," eprint arXiv:1703.00548, 2017.; Reponame:Vitela: Repositorio Institucional PUJ; Instname:Pontificia Universidad Javeriana Cali

E-Ressource
Zu den Favoriten
49

Presentación, Editorial, Índice Vol. 2 Nº. 2
Investigación, Esprint ; Investigación, Esprint
Esprint Investigación, ISSN 2960-8317, Vol. 2, Nº. 2, 2023 (Ejemplar dedicado a: Data and Artificial Intelligence.), pags. 1-4

E-Ressource
Zu den Favoriten
50

Mastering TensorFlow 1.x
Armando Fandango ; Armando Fandango ; Armando Fandango ; et al.
2018

E-Ressource
Zu den Favoriten
51

Mastering TensorFlow 1.x
Armando Fandango ; Armando Fandango ; Armando Fandango ; et al.
2018

E-Ressource
Zu den Favoriten
52

Mastering TensorFlow 1.x
Armando Fandango ; Armando Fandango ; Armando Fandango ; et al.
2018

E-Ressource
Zu den Favoriten
53

Mastering TensorFlow 1.x
Armando Fandango ; Armando Fandango ; Armando Fandango ; et al.
2018

E-Ressource
Zu den Favoriten
54

[Proceedings of the] International Conference on Educational Data Mining (EDM) (3rd, Pittsburgh, PA, July 11-13, 2010)
International Working Group on Educational Data Mining ; Baker, Ryan S. J. d. ; Merceron, Agathe ; et al.
354

Information Retrieval Pattern Recognition Interdisciplinary Approa... Computer Science Education Psychology
Konferenz
Zu den Favoriten
55

Linear Algebra and Learning From Data [Bookshelf]
George Cybenko
IEEE Control Systems. 40:71-72

4. Education
Fachzeitschrift
Zu den Favoriten
56

A roadmap to scientific software deployment: bio2Byte Tools as a use case
Gavalda-Garcia, Jose ; Diaz, Adrian G. ; Vranken, Wim ; et al.

Docker Biocontainers Biophysics Proteins Software Deployment Anaconda
Konferenz
Zu den Favoriten
57

[Preliminary Study on the Identification of Aerobic Vaginitis by Artificial Intelligence Analysis System]
Linling, Ye ; Fan, Yu ; Zhengqiang, Hu ; et al.
Sichuan da xue xue bao. Yi xue ban = Journal of Sichuan University. Medical science edition. 55(2)

Microscopy Lactobacillus Deep Learning ROC Curve Artificial Intelligence Vagina
Fachzeitschrift
Zu den Favoriten
58

Herramienta de visualización y análisis para la cuenta de Twitter @URosario ; Visualization and analysis tool for the Twitter account @URosario.
Gonzalez Sañudo, Laura Liliana ; Rodríguez Macías, Andrea
Alfarizi, M. I., Syafaah, L., & Lestandy, M. (2022). Emotional Text Classification Using TF-IDF (Term Frequency-Inverse Document Frequency) And LSTM (Long Short-Term Memory). JUITA : Jurnal Informatika, 10(2), 225. ; Bird, S., Klein, E., & Loper, E. (2009). Natural Language Processing with Python. O’Reilly Media. ; Eriksson, M., & Olsson, E.-K. (2016). Facebook and Twitter in Crisis Communication: A Comparative Study of Crisis Communication Professionals and Citizens. Journal of Contingencies and Crisis Management, 24(4), 198-208. https://doi.org/10.1111/1468-5973.12116 ; Kinsta. (2022, diciembre 19). Definición de Web scraping. https://kinsta.com/es/base-deconocimiento/que-es-web-scraping/ ; Murphy, K. P. (2020). Machine learning, second edition a probabilistic perspective. The ....

Procesamiento de lenguaj... data storytelling visualización de datos Natural Language Process... Data Visualization
Dissertation
Zu den Favoriten
59

Machine Learning Engineering with Python, 2nd Edition
McMahon, Andrew P.

006.3 Artificial Intelli... Machine Learning Pattern Recognition Data Mining
Buch
Zu den Favoriten

Filter