Treffer 1 - 20 von 409

1

Python machine learning in 7 days
Packt Publishing, production company.

Video
Zu den Favoriten
2

PyTorch deep learning in 7 days
Pytorch deep learning in 7 days

Packt Publishing, film distributor. ; Ballard, Will, speaker, author.

Video
Zu den Favoriten
3

Hybrid Machine Learning and Mathematical Modeling for Tumor Dynamics Prediction: Comparing SPIONs against mNP-FDG
Chattopadhyay, Amit K ; Unkundiye, Aimee Pascaline N ; Pearce, Gillian
Annals of Biostatistics and Biometric Applications 6(3): 2025

Quantitative Biology - Q... Condensed Matter - Soft... Physics - Medical Physic...
Report
Zu den Favoriten
4

New memory-based hybrid model for middle-term water demand forecasting in irrigated areas
González Perea, R. ; Fernández García, I. ; Camacho Poyato, E. ; et al.
In Agricultural Water Management 30 June 2023 284

Fachzeitschrift
Zu den Favoriten
5

UVBoost: An erythemal weighted ultraviolet radiation estimator based on a machine learning gradient boosting algorithm
Corrêa, Marcelo de Paula
In Journal of Quantitative Spectroscopy and Radiative Transfer April 2023 298

Fachzeitschrift
Zu den Favoriten
7

PROSPECTS FOR SHORT-TERM FORECASTING OF RIVER STREAMFLOW FROM SMALL WATERSHED RUNOFF USING MACHINE LEARNING METHODS
Vsevolod M. Moreido ; Boris I. Gartsman ; Dimitri P. Solomatine ; et al.
Hydrosphere. Hazard processes and phenomena; Volume 2 Issue 4: Hydrosphere. Hazard processes and phenomena; 375-390; Гидросфера. Опасные процессы и явления; Том 2 Выпуск 4: Гидросфера. Опасные процессы и явления; 375-390; 2686-8385; 2686-7877

E-Ressource
Zu den Favoriten
8

Multi-omics Dissection of Gut Microbiome Engraftment During FMT (DissEcT)
Gianluca Ianiro, Principal Investigator, MD, PhD
Disentangling Microbiome Engraftment by Multi-omics of the Gut Ecosystem During Fecal Transplant
D'Haens GR, Jobin C. Fecal Microbial Transplantation for Diseases Beyond Recurrent Clostridium Difficile Infection. Gastroenterology. 2019 Sep;157(3):624-636. doi: 10.1053/j.gastro.2019.04.053. Epub 2019 Jun 17.
Ianiro G, Bibbo S, Gasbarrini A, Cammarota G. Therapeutic modulation of gut microbiota: current clinical applications and future perspectives. Curr Drug Targets. 2014;15(8):762-70. doi: 10.2174/1389450115666140606111402.
Tixier EN, Verheyen E, Luo Y, Grinspan LT, Du CH, Ungaro RC, Walsh S, Grinspan AM. Systematic Review with Meta-Analysis: Fecal Microbiota Transplantation for Severe or Fulminant Clostridioides difficile. Dig Dis Sci. 2022 Mar;67(3):978-988. doi: 10.1007/s10620-021-06908-4. Epub 2021 Mar 22.
Baunwall SMD, Lee MM, Eriksen MK, Mullish BH, Marchesi JR, Dahlerup JF, Hvas CL. Faecal microbiota transplantation for recurrent Clostridioides difficile infection: An updated systematic review and meta-analysis. EClinicalMedicine. 2020 Nov 23;29-30:100642. doi: 10.1016/j.eclinm.2020.100642. eCollection 2020 Dec.
Ianiro G, Eusebi LH, Black CJ, Gasbarrini A, Cammarota G, Ford AC. Systematic review with meta-analysis: efficacy of faecal microbiota transplantation for the treatment of irritable bowel syndrome. Aliment Pharmacol Ther. 2019 Aug;50(3):240-248. doi: 10.1111/apt.15330. Epub 2019 May 28.
Costello SP, Soo W, Bryant RV, Jairath V, Hart AL, Andrews JM. Systematic review with meta-analysis: faecal microbiota transplantation for the induction of remission for active ulcerative colitis. Aliment Pharmacol Ther. 2017 Aug;46(3):213-224. doi: 10.1111/apt.14173. Epub 2017 Jun 14.
Proenca IM, Allegretti JR, Bernardo WM, de Moura DTH, Ponte Neto AM, Matsubayashi CO, Flor MM, Kotinda APST, de Moura EGH. Fecal microbiota transplantation improves metabolic syndrome parameters: systematic review with meta-analysis based on randomized clinical trials. Nutr Res. 2020 Nov;83:1-14. doi: 10.1016/j.nutres.2020.06.018. Epub 2020 Jul 3.
Ianiro G, Sanguinetti M, Gasbarrini A, Cammarota G. Predictors of failure after single faecal microbiota transplantation in patients with recurrent Clostridium difficile infection: results from a 3-year cohort study: authors' reply. Clin Microbiol Infect. 2017 Nov;23(11):891. doi: 10.1016/j.cmi.2017.05.005. Epub 2017 May 11. No abstract available.
Moayyedi P, Surette MG, Kim PT, Libertucci J, Wolfe M, Onischi C, Armstrong D, Marshall JK, Kassam Z, Reinisch W, Lee CH. Fecal Microbiota Transplantation Induces Remission in Patients With Active Ulcerative Colitis in a Randomized Controlled Trial. Gastroenterology. 2015 Jul;149(1):102-109.e6. doi: 10.1053/j.gastro.2015.04.001. Epub 2015 Apr 7.
Ianiro G, Maida M, Burisch J, Simonelli C, Hold G, Ventimiglia M, Gasbarrini A, Cammarota G. Efficacy of different faecal microbiota transplantation protocols for Clostridium difficile infection: A systematic review and meta-analysis. United European Gastroenterol J. 2018 Oct;6(8):1232-1244. doi: 10.1177/2050640618780762. Epub 2018 Jun 3.
Zuo T, Wong SH, Lam K, Lui R, Cheung K, Tang W, Ching JYL, Chan PKS, Chan MCW, Wu JCY, Chan FKL, Yu J, Sung JJY, Ng SC. Bacteriophage transfer during faecal microbiota transplantation in Clostridium difficile infection is associated with treatment outcome. Gut. 2018 Apr;67(4):634-643. doi: 10.1136/gutjnl-2017-313952. Epub 2017 May 24.
Zuo T, Wong SH, Cheung CP, Lam K, Lui R, Cheung K, Zhang F, Tang W, Ching JYL, Wu JCY, Chan PKS, Sung JJY, Yu J, Chan FKL, Ng SC. Gut fungal dysbiosis correlates with reduced efficacy of fecal microbiota transplantation in Clostridium difficile infection. Nat Commun. 2018 Sep 10;9(1):3663. doi: 10.1038/s41467-018-06103-6.
Kootte RS, Levin E, Salojarvi J, Smits LP, Hartstra AV, Udayappan SD, Hermes G, Bouter KE, Koopen AM, Holst JJ, Knop FK, Blaak EE, Zhao J, Smidt H, Harms AC, Hankemeijer T, Bergman JJGHM, Romijn HA, Schaap FG, Olde Damink SWM, Ackermans MT, Dallinga-Thie GM, Zoetendal E, de Vos WM, Serlie MJ, Stroes ESG, Groen AK, Nieuwdorp M. Improvement of Insulin Sensitivity after Lean Donor Feces in Metabolic Syndrome Is Driven by Baseline Intestinal Microbiota Composition. Cell Metab. 2017 Oct 3;26(4):611-619.e6. doi: 10.1016/j.cmet.2017.09.008.
Vaughn BP, Vatanen T, Allegretti JR, Bai A, Xavier RJ, Korzenik J, Gevers D, Ting A, Robson SC, Moss AC. Increased Intestinal Microbial Diversity Following Fecal Microbiota Transplant for Active Crohn's Disease. Inflamm Bowel Dis. 2016 Sep;22(9):2182-90. doi: 10.1097/MIB.0000000000000893.
Turpin W, Espin-Garcia O, Xu W, Silverberg MS, Kevans D, Smith MI, Guttman DS, Griffiths A, Panaccione R, Otley A, Xu L, Shestopaloff K, Moreno-Hagelsieb G; GEM Project Research Consortium; Paterson AD, Croitoru K. Association of host genome with intestinal microbial composition in a large healthy cohort. Nat Genet. 2016 Nov;48(11):1413-1417. doi: 10.1038/ng.3693. Epub 2016 Oct 3.
Goodrich JK, Davenport ER, Clark AG, Ley RE. The Relationship Between the Human Genome and Microbiome Comes into View. Annu Rev Genet. 2017 Nov 27;51:413-433. doi: 10.1146/annurev-genet-110711-155532. Epub 2017 Sep 20.
Danne C, Rolhion N, Sokol H. Recipient factors in faecal microbiota transplantation: one stool does not fit all. Nat Rev Gastroenterol Hepatol. 2021 Jul;18(7):503-513. doi: 10.1038/s41575-021-00441-5. Epub 2021 Apr 27.
Littmann ER, Lee JJ, Denny JE, Alam Z, Maslanka JR, Zarin I, Matsuda R, Carter RA, Susac B, Saffern MS, Fett B, Mattei LM, Bittinger K, Abt MC. Host immunity modulates the efficacy of microbiota transplantation for treatment of Clostridioides difficile infection. Nat Commun. 2021 Feb 2;12(1):755. doi: 10.1038/s41467-020-20793-x.
Lewis JD, Chuai S, Nessel L, Lichtenstein GR, Aberra FN, Ellenberg JH. Use of the noninvasive components of the Mayo score to assess clinical response in ulcerative colitis. Inflamm Bowel Dis. 2008 Dec;14(12):1660-6. doi: 10.1002/ibd.20520.
Lavelle A, Sokol H. Gut microbiota-derived metabolites as key actors in inflammatory bowel disease. Nat Rev Gastroenterol Hepatol. 2020 Apr;17(4):223-237. doi: 10.1038/s41575-019-0258-z. Epub 2020 Feb 19.
Khoruts A, Sadowsky MJ. Understanding the mechanisms of faecal microbiota transplantation. Nat Rev Gastroenterol Hepatol. 2016 Sep;13(9):508-16. doi: 10.1038/nrgastro.2016.98. Epub 2016 Jun 22.
Zimmet P, Magliano D, Matsuzawa Y, Alberti G, Shaw J. The metabolic syndrome: a global public health problem and a new definition. J Atheroscler Thromb. 2005;12(6):295-300. doi: 10.5551/jat.12.295.
Alberti KG, Eckel RH, Grundy SM, Zimmet PZ, Cleeman JI, Donato KA, Fruchart JC, James WP, Loria CM, Smith SC Jr; International Diabetes Federation Task Force on Epidemiology and Prevention; Hational Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; International Association for the Study of Obesity. Harmonizing the metabolic syndrome: a joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation. 2009 Oct 20;120(16):1640-5. doi: 10.1161/CIRCULATIONAHA.109.192644. Epub 2009 Oct 5.
McDonald LC, Gerding DN, Johnson S, Bakken JS, Carroll KC, Coffin SE, Dubberke ER, Garey KW, Gould CV, Kelly C, Loo V, Shaklee Sammons J, Sandora TJ, Wilcox MH. Clinical Practice Guidelines for Clostridium difficile Infection in Adults and Children: 2017 Update by the Infectious Diseases Society of America (IDSA) and Society for Healthcare Epidemiology of America (SHEA). Clin Infect Dis. 2018 Mar 19;66(7):987-994. doi: 10.1093/cid/ciy149.
Costello SP, Hughes PA, Waters O, Bryant RV, Vincent AD, Blatchford P, Katsikeros R, Makanyanga J, Campaniello MA, Mavrangelos C, Rosewarne CP, Bickley C, Peters C, Schoeman MN, Conlon MA, Roberts-Thomson IC, Andrews JM. Effect of Fecal Microbiota Transplantation on 8-Week Remission in Patients With Ulcerative Colitis: A Randomized Clinical Trial. JAMA. 2019 Jan 15;321(2):156-164. doi: 10.1001/jama.2018.20046.
Matsuda M, DeFronzo RA. Insulin sensitivity indices obtained from oral glucose tolerance testing: comparison with the euglycemic insulin clamp. Diabetes Care. 1999 Sep;22(9):1462-70. doi: 10.2337/diacare.22.9.1462.
Mari A, Pacini G, Murphy E, Ludvik B, Nolan JJ. A model-based method for assessing insulin sensitivity from the oral glucose tolerance test. Diabetes Care. 2001 Mar;24(3):539-48. doi: 10.2337/diacare.24.3.539.
Cammarota G, Masucci L, Ianiro G, Bibbo S, Dinoi G, Costamagna G, Sanguinetti M, Gasbarrini A. Randomised clinical trial: faecal microbiota transplantation by colonoscopy vs. vancomycin for the treatment of recurrent Clostridium difficile infection. Aliment Pharmacol Ther. 2015 May;41(9):835-43. doi: 10.1111/apt.13144. Epub 2015 Mar 1.
Baruch EN, Youngster I, Ben-Betzalel G, Ortenberg R, Lahat A, Katz L, Adler K, Dick-Necula D, Raskin S, Bloch N, Rotin D, Anafi L, Avivi C, Melnichenko J, Steinberg-Silman Y, Mamtani R, Harati H, Asher N, Shapira-Frommer R, Brosh-Nissimov T, Eshet Y, Ben-Simon S, Ziv O, Khan MAW, Amit M, Ajami NJ, Barshack I, Schachter J, Wargo JA, Koren O, Markel G, Boursi B. Fecal microbiota transplant promotes response in immunotherapy-refractory melanoma patients. Science. 2021 Feb 5;371(6529):602-609. doi: 10.1126/science.abb5920. Epub 2020 Dec 10.
Cammarota G, Ianiro G, Kelly CR, Mullish BH, Allegretti JR, Kassam Z, Putignani L, Fischer M, Keller JJ, Costello SP, Sokol H, Kump P, Satokari R, Kahn SA, Kao D, Arkkila P, Kuijper EJ, Vehreschild MJG, Pintus C, Lopetuso L, Masucci L, Scaldaferri F, Terveer EM, Nieuwdorp M, Lopez-Sanroman A, Kupcinskas J, Hart A, Tilg H, Gasbarrini A. International consensus conference on stool banking for faecal microbiota transplantation in clinical practice. Gut. 2019 Dec;68(12):2111-2121. doi: 10.1136/gutjnl-2019-319548. Epub 2019 Sep 28.
Ianiro G, Mullish BH, Kelly CR, Kassam Z, Kuijper EJ, Ng SC, Iqbal TH, Allegretti JR, Bibbo S, Sokol H, Zhang F, Fischer M, Costello SP, Keller JJ, Masucci L, van Prehn J, Quaranta G, Quraishi MN, Segal J, Kao D, Satokari R, Sanguinetti M, Tilg H, Gasbarrini A, Cammarota G. Reorganisation of faecal microbiota transplant services during the COVID-19 pandemic. Gut. 2020 Sep;69(9):1555-1563. doi: 10.1136/gutjnl-2020-321829. Epub 2020 Jul 3.
El-Salhy M, Hatlebakk JG, Gilja OH, Brathen Kristoffersen A, Hausken T. Efficacy of faecal microbiota transplantation for patients with irritable bowel syndrome in a randomised, double-blind, placebo-controlled study. Gut. 2020 May;69(5):859-867. doi: 10.1136/gutjnl-2019-319630. Epub 2019 Dec 18.
Youngster I, Mahabamunuge J, Systrom HK, Sauk J, Khalili H, Levin J, Kaplan JL, Hohmann EL. Oral, frozen fecal microbiota transplant (FMT) capsules for recurrent Clostridium difficile infection. BMC Med. 2016 Sep 9;14(1):134. doi: 10.1186/s12916-016-0680-9.
Youngster I, Russell GH, Pindar C, Ziv-Baran T, Sauk J, Hohmann EL. Oral, capsulized, frozen fecal microbiota transplantation for relapsing Clostridium difficile infection. JAMA. 2014 Nov 5;312(17):1772-8. doi: 10.1001/jama.2014.13875.
Nash AK, Auchtung TA, Wong MC, Smith DP, Gesell JR, Ross MC, Stewart CJ, Metcalf GA, Muzny DM, Gibbs RA, Ajami NJ, Petrosino JF. The gut mycobiome of the Human Microbiome Project healthy cohort. Microbiome. 2017 Nov 25;5(1):153. doi: 10.1186/s40168-017-0373-4.
Quince C, Walker AW, Simpson JT, Loman NJ, Segata N. Shotgun metagenomics, from sampling to analysis. Nat Biotechnol. 2017 Sep 12;35(9):833-844. doi: 10.1038/nbt.3935.
Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012 Mar 4;9(4):357-9. doi: 10.1038/nmeth.1923.
Kao D, Roach B, Silva M, Beck P, Rioux K, Kaplan GG, Chang HJ, Coward S, Goodman KJ, Xu H, Madsen K, Mason A, Wong GK, Jovel J, Patterson J, Louie T. Effect of Oral Capsule- vs Colonoscopy-Delivered Fecal Microbiota Transplantation on Recurrent Clostridium difficile Infection: A Randomized Clinical Trial. JAMA. 2017 Nov 28;318(20):1985-1993. doi: 10.1001/jama.2017.17077.
Beghini F, McIver LJ, Blanco-Miguez A, Dubois L, Asnicar F, Maharjan S, Mailyan A, Manghi P, Scholz M, Thomas AM, Valles-Colomer M, Weingart G, Zhang Y, Zolfo M, Huttenhower C, Franzosa EA, Segata N. Integrating taxonomic, functional, and strain-level profiling of diverse microbial communities with bioBakery 3. Elife. 2021 May 4;10:e65088. doi: 10.7554/eLife.65088.
Vernocchi P, Marini F, Capuani G, Tomassini A, Conta G, Del Chierico F, Malattia C, De Benedetti F, Martini A, Dallapiccola B, van Dijkhuizen EHP, Miccheli A, Putignani L. Fused Omics Data Models Reveal Gut Microbiome Signatures Specific of Inactive Stage of Juvenile Idiopathic Arthritis in Pediatric Patients. Microorganisms. 2020 Oct 6;8(10):1540. doi: 10.3390/microorganisms8101540.
Zhang X, Li L, Mayne J, Ning Z, Stintzi A, Figeys D. Assessing the impact of protein extraction methods for human gut metaproteomics. J Proteomics. 2018 May 30;180:120-127. doi: 10.1016/j.jprot.2017.07.001. Epub 2017 Jul 10.
Distler U, Kuharev J, Navarro P, Tenzer S. Label-free quantification in ion mobility-enhanced data-independent acquisition proteomics. Nat Protoc. 2016 Apr;11(4):795-812. doi: 10.1038/nprot.2016.042. Epub 2016 Mar 24.
Marzano V, Pane S, Foglietta G, Levi Mortera S, Vernocchi P, Onetti Muda A, Putignani L. Mass Spectrometry Based-Proteomic Analysis of Anisakis spp.: A Preliminary Study towards a New Diagnostic Tool. Genes (Basel). 2020 Jun 24;11(6):693. doi: 10.3390/genes11060693.
Cheng K, Ning Z, Zhang X, Li L, Liao B, Mayne J, Stintzi A, Figeys D. MetaLab: an automated pipeline for metaproteomic data analysis. Microbiome. 2017 Dec 2;5(1):157. doi: 10.1186/s40168-017-0375-2.
Alonso-Betanzos A, Bolon-Canedo V. Big-Data Analysis, Cluster Analysis, and Machine-Learning Approaches. Adv Exp Med Biol. 2018;1065:607-626. doi: 10.1007/978-3-319-77932-4_37.

Report
Zu den Favoriten
9

Correlating in vitro performance with physico-chemical characteristics of nanofibrous scaffolds for skin tissue engineering using supervised machine learning algorithms.
Sujeeun LY ; Goonoo N ; Ramphul H ; et al.
Publisher: Royal Society Publishing Country of Publication: England NLM ID: 101647528 Publication Model: eCollection Cited Medium: Print ISSN: 2054-5703 (Print) Linking ISSN: 20545703 NLM ISO Abbreviation: R Soc Open Sci Subsets: PubMed not MEDLINE

Fachzeitschrift
Zu den Favoriten
10

Automated detection of mouth opening in newborn infants.
Zeng G ; Ahn YA ; Leung TS ; et al.
Publisher: Springer Country of Publication: United States NLM ID: 101244316 Publication Model: Electronic Cited Medium: Internet ISSN: 1554-3528 (Electronic) Linking ISSN: 1554351X NLM ISO Abbreviation: Behav Res Methods Subsets: MEDLINE

Humans Infant, Newborn Female Male Support Vector Machine Video Recording
Fachzeitschrift
Zu den Favoriten
11

A predictive model developed to classify Leishmania promastigotes at two distinct life stages using MALDI-TOF mass spectrometry.
Cubides-Cely S ; Serrano BM ; Mejía-Ospino E ; et al.
Publisher: Springer-Verlag Country of Publication: Germany NLM ID: 0410427 Publication Model: Electronic Cited Medium: Internet ISSN: 1432-072X (Electronic) Linking ISSN: 03028933 NLM ISO Abbreviation: Arch Microbiol Subsets: MEDLINE

Support Vector Machine Machine Learning Neural Networks, Compute... Protozoan Proteins analy... Spectrometry, Mass, Matr... Leishmania classificatio...
Fachzeitschrift
Zu den Favoriten
12

Increasing tendency of urine protein is a risk factor for rapid eGFR decline in patients with CKD: A machine learning-based prediction model by using a big database.
Inaguma D ; Kitagawa A ; Yanagiya R ; et al.
Publisher: Public Library of Science Country of Publication: United States NLM ID: 101285081 Publication Model: eCollection Cited Medium: Internet ISSN: 1932-6203 (Electronic) Linking ISSN: 19326203 NLM ISO Abbreviation: PLoS One Subsets: MEDLINE

Aged Aged, 80 and over Female Humans Male Middle Aged
Fachzeitschrift
Zu den Favoriten
13

Machine learning approach to predict postpancreatectomy hemorrhage following pancreaticoduodenectomy: a retrospective study.
Ikuta S ; Fujikawa M ; Nakajima T ; et al.
Publisher: Springer-Verlag Country of Publication: Germany NLM ID: 9808285 Publication Model: Electronic Cited Medium: Internet ISSN: 1435-2451 (Electronic) Linking ISSN: 14352443 NLM ISO Abbreviation: Langenbecks Arch Surg Subsets: MEDLINE

Humans Retrospective Studies Hemorrhage Machine Learning Pancreaticoduodenectomy... C-Reactive Protein
Fachzeitschrift
Zu den Favoriten
14

The infection post flexible UreteroreNoscopy (I-FUN) predictive model based on machine learning: a new clinical tool to assess the risk of sepsis post retrograde intrarenal surgery for kidney stone disease.
Castellani D ; De Stefano V ; Brocca C ; et al.
Publisher: Springer International Country of Publication: Germany NLM ID: 8307716 Publication Model: Electronic Cited Medium: Internet ISSN: 1433-8726 (Electronic) Linking ISSN: 07244983 NLM ISO Abbreviation: World J Urol Subsets: MEDLINE

Humans Male Female Middle Aged Risk Assessment Prospective Studies
Fachzeitschrift
Zu den Favoriten
15

Nitric Oxide Levels Were Associated With Postoperative Delirium Following Cardiac Surgery
Qin Zhang, Professor
Identifying Nitric Oxide Levels as Predictors of Postoperative Delirium in Following Cardiac Surgical Patients

Report
Zu den Favoriten
16

Deep Learning Detection of Pulmonary Hypertension and Low Ejection Fraction Via Digital Stethoscope and 3-Lead ECG (PH ELEFT 2-0)
Deep Learning for Detection of Pulmonary Hypertension and Reduced Left Ventricular Ejection Fraction Using a Combined Digital Stethoscope and Three-lead Electrocardiogram
Rees PJ, Hay JG, Webb JR. Premedication for fibreoptic bronchoscopy. Thorax. 1983 Aug;38(8):624-7. doi: 10.1136/thx.38.8.624.
Maron BA, Hess E, Maddox TM, Opotowsky AR, Tedford RJ, Lahm T, Joynt KE, Kass DJ, Stephens T, Stanislawski MA, Swenson ER, Goldstein RH, Leopold JA, Zamanian RT, Elwing JM, Plomondon ME, Grunwald GK, Baron AE, Rumsfeld JS, Choudhary G. Association of Borderline Pulmonary Hypertension With Mortality and Hospitalization in a Large Patient Cohort: Insights From the Veterans Affairs Clinical Assessment, Reporting, and Tracking Program. Circulation. 2016 Mar 29;133(13):1240-8. doi: 10.1161/CIRCULATIONAHA.115.020207. Epub 2016 Feb 12.
Assad TR, Maron BA, Robbins IM, Xu M, Huang S, Harrell FE, Farber-Eger EH, Wells QS, Choudhary G, Hemnes AR, Brittain EL. Prognostic Effect and Longitudinal Hemodynamic Assessment of Borderline Pulmonary Hypertension. JAMA Cardiol. 2017 Dec 1;2(12):1361-1368. doi: 10.1001/jamacardio.2017.3882.
Strange G, Stewart S, Celermajer DS, Prior D, Scalia GM, Marwick TH, Gabbay E, Ilton M, Joseph M, Codde J, Playford D; NEDA Contributing Sites. Threshold of Pulmonary Hypertension Associated With Increased Mortality. J Am Coll Cardiol. 2019 Jun 4;73(21):2660-2672. doi: 10.1016/j.jacc.2019.03.482.
Choudhary G, Jankowich M, Wu WC. Elevated pulmonary artery systolic pressure predicts heart failure admissions in African Americans: Jackson Heart Study. Circ Heart Fail. 2014 Jul;7(4):558-64. doi: 10.1161/CIRCHEARTFAILURE.114.001366. Epub 2014 Jun 5.
Maron BA, Choudhary G, Khan UA, Jankowich MD, McChesney H, Ferrazzani SJ, Gaddam S, Sharma S, Opotowsky AR, Bhatt DL, Rocco TP, Aragam JR. Clinical profile and underdiagnosis of pulmonary hypertension in US veteran patients. Circ Heart Fail. 2013 Sep 1;6(5):906-12. doi: 10.1161/CIRCHEARTFAILURE.112.000091. Epub 2013 Jun 27.
Attia ZI, Kapa S, Lopez-Jimenez F, McKie PM, Ladewig DJ, Satam G, Pellikka PA, Enriquez-Sarano M, Noseworthy PA, Munger TM, Asirvatham SJ, Scott CG, Carter RE, Friedman PA. Screening for cardiac contractile dysfunction using an artificial intelligence-enabled electrocardiogram. Nat Med. 2019 Jan;25(1):70-74. doi: 10.1038/s41591-018-0240-2. Epub 2019 Jan 7.
Guo L, Khobragade N, Kieu S, Ilyas S, Nicely PN, Asiedu EK, Lima FV, Currie C, Lastowski E, Choudhary G. Development and Evaluation of a Deep Learning-Based Pulmonary Hypertension Screening Algorithm Using a Digital Stethoscope. J Am Heart Assoc. 2025 Feb 4;14(3):e036882. doi: 10.1161/JAHA.124.036882. Epub 2025 Feb 3.
Colman R, Whittingham H, Tomlinson G, Granton J. Utility of the physical examination in detecting pulmonary hypertension. A mixed methods study. PLoS One. 2014 Oct 24;9(10):e108499. doi: 10.1371/journal.pone.0108499. eCollection 2014.
Guo L, Pressman GS, Kieu SN, Marrus SB, Mathew G, Prince J, Lastowski E, McDonough RV, Currie C, Tiwari U, Maidens JN, Al-Sudani H, Friend E, Padmanabhan D, Kumar P, Kersh E, Venkatraman S, Qamruddin S. Automated Detection of Reduced Ejection Fraction Using an ECG-Enabled Digital Stethoscope: A Large Cohort Validation. JACC Adv. 2025 Mar;4(3):101619. doi: 10.1016/j.jacadv.2025.101619. Epub 2025 Feb 20.
Marcus GM, Vessey J, Jordan MV, Huddleston M, McKeown B, Gerber IL, Foster E, Chatterjee K, McCulloch CE, Michaels AD. Relationship between accurate auscultation of a clinically useful third heart sound and level of experience. Arch Intern Med. 2006 Mar 27;166(6):617-22. doi: 10.1001/archinte.166.6.617.

Report
Zu den Favoriten
17

PrEventing PostoPERative Pulmonary Complications by Establishing a MachINe-learning assisTed Approach (PEPPERMINT)
Britta Trautwein, Resident doctor
PrEventing PostoPERative Pulmonary Complications by Establishing a MachINe-learning assisTed Approach
Fernandez-Bustamante A, Frendl G, Sprung J, Kor DJ, Subramaniam B, Martinez Ruiz R, Lee JW, Henderson WG, Moss A, Mehdiratta N, Colwell MM, Bartels K, Kolodzie K, Giquel J, Vidal Melo MF. Postoperative Pulmonary Complications, Early Mortality, and Hospital Stay Following Noncardiothoracic Surgery: A Multicenter Study by the Perioperative Research Network Investigators. JAMA Surg. 2017 Feb 1;152(2):157-166. doi: 10.1001/jamasurg.2016.4065.
Ferreyra GP, Baussano I, Squadrone V, Richiardi L, Marchiaro G, Del Sorbo L, Mascia L, Merletti F, Ranieri VM. Continuous positive airway pressure for treatment of respiratory complications after abdominal surgery: a systematic review and meta-analysis. Ann Surg. 2008 Apr;247(4):617-26. doi: 10.1097/SLA.0b013e3181675829.
Miskovic A, Lumb AB. Postoperative pulmonary complications. Br J Anaesth. 2017 Mar 1;118(3):317-334. doi: 10.1093/bja/aex002.
Abbott TEF, Fowler AJ, Pelosi P, Gama de Abreu M, Moller AM, Canet J, Creagh-Brown B, Mythen M, Gin T, Lalu MM, Futier E, Grocott MP, Schultz MJ, Pearse RM; StEP-COMPAC Group. A systematic review and consensus definitions for standardised end-points in perioperative medicine: pulmonary complications. Br J Anaesth. 2018 May;120(5):1066-1079. doi: 10.1016/j.bja.2018.02.007. Epub 2018 Mar 27.
Ball L, Pelosi P. Predictive scores for postoperative pulmonary complications: time to move towards clinical practice. Minerva Anestesiol. 2016 Mar;82(3):265-7. Epub 2015 Sep 4. No abstract available.
Nithiuthai J, Siriussawakul A, Junkai R, Horugsa N, Jarungjitaree S, Triyasunant N. Do ARISCAT scores help to predict the incidence of postoperative pulmonary complications in elderly patients after upper abdominal surgery? An observational study at a single university hospital. Perioper Med (Lond). 2021 Dec 8;10(1):43. doi: 10.1186/s13741-021-00214-3.
Xue B, Li D, Lu C, King CR, Wildes T, Avidan MS, Kannampallil T, Abraham J. Use of Machine Learning to Develop and Evaluate Models Using Preoperative and Intraoperative Data to Identify Risks of Postoperative Complications. JAMA Netw Open. 2021 Mar 1;4(3):e212240. doi: 10.1001/jamanetworkopen.2021.2240.
Szabo M, Bozo A, Darvas K, Soos S, Ozse M, Ivanyi ZD. The role of ultrasonographic lung aeration score in the prediction of postoperative pulmonary complications: an observational study. BMC Anesthesiol. 2021 Jan 14;21(1):19. doi: 10.1186/s12871-021-01236-6.
van Sloun RJG, Demi L. Localizing B-Lines in Lung Ultrasonography by Weakly Supervised Deep Learning, In-Vivo Results. IEEE J Biomed Health Inform. 2020 Apr;24(4):957-964. doi: 10.1109/JBHI.2019.2936151. Epub 2019 Aug 19.
Brusasco C, Santori G, Tavazzi G, Via G, Robba C, Gargani L, Mojoli F, Mongodi S, Bruzzo E, Tro R, Boccacci P, Isirdi A, Forfori F, Corradi F; UCARE (Ultrasound in Critical care and Anesthesia Research Group). Second-order grey-scale texture analysis of pleural ultrasound images to differentiate acute respiratory distress syndrome and cardiogenic pulmonary edema. J Clin Monit Comput. 2022 Feb;36(1):131-140. doi: 10.1007/s10877-020-00629-1. Epub 2020 Dec 12.
Trautwein B, Beer M, Blobner M, Jungwirth B, Kagerbauer SM, Gotz M. Preventing postoperative pulmonary complications by establishing a machine-learning assisted approach (PEPPERMINT): Study protocol for the creation of a risk prediction model. PLoS One. 2025 Aug 19;20(8):e0329076. doi: 10.1371/journal.pone.0329076. eCollection 2025.

Report
Zu den Favoriten
18

Diagnostic Innovations for Pediatric Tuberculosis in Bolivia
Asociacion Benefica Prisma ; Universidad Peruana Cayetano Heredia ; Johns Hopkins Bloomberg School of Public Health ; et al.
Diagnostic Innovations for Pediatric Tuberculosis in Bolivia

Report
Zu den Favoriten
19

Effectiveness of Weight Loss Methods on Lifespan for Metabolic Syndrome
Nazarbayev University School of Medicine ; Nazarbayev University ; Astana Medical University ; et al.
Effectiveness of Pharmacologic, Surgical, and Dietetic Weight Loss Methods on Lifespan in Patients With Metabolic Syndrome: a Comparative Clinical Trial

Report
Zu den Favoriten
20

Prediction of clinical outcomes in women with placenta accreta spectrum using machine learning models: an international multicenter study.
Shazly, Sherif A. ; Hortu, Ismet ; Shih, Jin-Chung ; et al.
Journal of Maternal-Fetal & Neonatal Medicine. Dec2022, Vol. 35 Issue 25, p6644-6653. 10p.

MACHINE learning PLACENTA accreta PLACENTA praevia SURGICAL blood loss INTENSIVE care units
Fachzeitschrift
Zu den Favoriten

Filter