Treffer: Adaptive Steered Frequency–Wavenumber Analysis for High-Frequency Source Localization in Shallow Water.
Weitere Informationen
In shallow-water environments, source localization often suffers from reduced performance in conventional array signal processing techniques for frequency bands above 1 kHz due to environmental mismatch. A recently proposed technique, called the steered frequency–wavenumber (SFK) analysis method, overcomes this limitation. By incorporating beam-steering techniques into frequency–wavenumber analysis, this method enables target localization even in sparse conditions where high-frequency signals are received. This study extends the SFK method by applying various adaptive signal processing techniques, with a particular focus on the minimum-variance distortionless response and white noise gain constraint methods. Using snapping shrimp sounds from the SAVEX15 experiment, we analyzed localization performance and compared it with the Bartlett SFK approach. The snapping shrimp signals have frequency components ranging from 5 to 24 kHz and exhibit impulsive characteristics with a duration of 0.2 ms. Signals recorded by a sparse vertical array of 16 sensors, with a 60-m aperture in 100-m shallow water, enabled the localization of a source at a range of 38 m and a depth of 99.8 m. [ABSTRACT FROM AUTHOR]