Treffer: Real-Time Detection and Localization of Force on a Capacitive Elastomeric Sensor Array Using Image Processing and Machine Learning.
Weitere Informationen
Soft and flexible capacitive tactile sensors are vital in prosthetics, wearable health monitoring, and soft robotics applications. However, achieving accurate real-time force detection and spatial localization remains a significant challenge, especially in dynamic, non-rigid environments like prosthetic liners. This study presents a real-time force point detection and tracking system using a custom-fabricated soft elastomeric capacitive sensor array in conjunction with image processing and machine learning techniques. The system integrates Otsu's thresholding, Connected Component Labeling, and a tailored cluster-tracking algorithm for anomaly detection, enabling real-time localization within 1 ms. A 6 × 6 Dragon Skin-based sensor array was fabricated, embedded with copper yarn electrodes, and evaluated using a UR3e robotic arm and a Schunk force-torque sensor to generate controlled stimuli. The fabricated tactile sensor measures the applied force from 1 to 3 N. Sensor output was captured via a MUCA breakout board and Arduino Nano 33 IoT, transmitting the Ratio of Mutual Capacitance data for further analysis. A Python-based processing pipeline filters and visualizes the data with real-time clustering and adaptive thresholding. Machine learning models such as linear regression, Support Vector Machine, decision tree, and Gaussian Process Regression were evaluated to correlate force with capacitance values. Decision Tree Regression achieved the highest performance ( R 2 = 0.9996 , R M S E = 0.0446 ), providing an effective correlation factor of 51.76 for force estimation. The system offers robust performance in complex interactions and a scalable solution for soft robotics and prosthetic force mapping, supporting health monitoring, safe automation, and medical diagnostics. [ABSTRACT FROM AUTHOR]