Treffer: Enhancing Pumped Hydro Storage Regulation Through Adaptive Initial Reservoir Capacity in Multistage Stochastic Coordinated Planning.
Weitere Informationen
Hybrid pumped hydro storage plants, by integrating pump stations between cascade hydropower stations, have overcome the challenges associated with site selection and construction of pure pumped hydro storage systems, thereby becoming the optimal large-scale energy storage solution for enhancing the absorption of renewable energy. However, the multi-energy conversion between pump stations, hydropower, wind power, and photovoltaic plants poses challenges to both their planning schemes and operational performance. This study proposes a multistage stochastic coordinated planning model for cascade hydropower-wind-solar-thermal-pumped hydro storage (CHWS-PHS) systems. First, a Hybrid Pumped Hydro Storage Adaptive Initial Reservoir Capacity (HPHS-AIRC) strategy is developed to enhance the system's regulation capability by optimizing initial reservoir levels that are synchronized with renewable generation patterns. Then, Non-anticipativity Constraints (NACs) are incorporated into this model to ensure the dynamic adaptation of investment decisions under multi-timescale uncertainties, including inter-annual natural water inflow (NWI) variations and hourly fluctuations in wind and solar power. Simulation results on the IEEE 118-bus system show that the proposed MSSP model reduces total costs by 6% compared with the traditional two-stage approach (TSSP). Moreover, the HPHS-AIRC strategy improves pumped hydro utilization by 33.8%, particularly benefiting scenarios with drought conditions or operational constraints. [ABSTRACT FROM AUTHOR]