Takashi Ikeuchi, Mayumi Ide, Yan Zeng, Takashi Nicholas Maeda, & Shohei Shimizu. (2023). Python package for causal discovery based on Li NGAM. Journal of Machine Learning Research, 24, 1-8.
ISO-690 (author-date, English)TAKASHI IKEUCHI, MAYUMI IDE, YAN ZENG, TAKASHI NICHOLAS MAEDA und SHOHEI SHIMIZU, 2023. Python package for causal discovery based on Li NGAM. Journal of Machine Learning Research. 1 Januar 2023. Vol. 24, , p. 1-8.
Modern Language Association 9th editionTakashi Ikeuchi, Mayumi Ide, Yan Zeng, Takashi Nicholas Maeda, und Shohei Shimizu. „Python Package for Causal Discovery Based on Li NGAM.“. Journal of Machine Learning Research, Bd. 24, Januar 2023, S. 1-8.
Mohr Siebeck - Recht (Deutsch - Österreich)Takashi Ikeuchi/Mayumi Ide/Yan Zeng/Takashi Nicholas Maeda/Shohei Shimizu: Python package for causal discovery based on Li NGAM., Journal of Machine Learning Research 2023, 1-8.
Emerald - HarvardTakashi Ikeuchi, Mayumi Ide, Yan Zeng, Takashi Nicholas Maeda und Shohei Shimizu. (2023), „Python package for causal discovery based on Li NGAM.“, Journal of Machine Learning Research, Vol. 24, S. 1-8.