Serviceeinschränkungen vom 12.-22.02.2026 - weitere Infos auf der UB-Homepage
American Psychological Association 6th edition

Medina-Rosales, E., Cabrera-Vives, G., & Miller, C. J. (2024). Mitigating bias in deep learning: training unbiased models on biased data for the morphological classification of galaxies. Monthly Notices of the Royal Astronomical Society, 531(1), 52-60. https://doi.org/10.1093/mnras/stae1088

ISO-690 (author-date, English)

MEDINA-ROSALES, Esteban, CABRERA-VIVES, Guillermo und MILLER, Christopher J, 2024. Mitigating bias in deep learning: training unbiased models on biased data for the morphological classification of galaxies. Monthly Notices of the Royal Astronomical Society. 15 Juni 2024. Vol. 531, no. 1, p. 52-60. DOI 10.1093/mnras/stae1088.

Modern Language Association 9th edition

Medina-Rosales, E., G. Cabrera-Vives, und C. J. Miller. „Mitigating Bias in Deep Learning: Training Unbiased Models on Biased Data for the Morphological Classification of Galaxies.“. Monthly Notices of the Royal Astronomical Society, Bd. 531, Nr. 1, Juni 2024, S. 52-60, https://doi.org/10.1093/mnras/stae1088.

Mohr Siebeck - Recht (Deutsch - Österreich)

Medina-Rosales, Esteban/Cabrera-Vives, Guillermo/Miller, Christopher J: Mitigating bias in deep learning: training unbiased models on biased data for the morphological classification of galaxies., Monthly Notices of the Royal Astronomical Society 2024, 52-60.

Emerald - Harvard

Medina-Rosales, E., Cabrera-Vives, G. und Miller, C.J. (2024), „Mitigating bias in deep learning: training unbiased models on biased data for the morphological classification of galaxies.“, Monthly Notices of the Royal Astronomical Society, Vol. 531 No. 1, S. 52-60.

Achtung: Diese Zitate sind unter Umständen nicht zu 100% korrekt.