Treffer: Computing in Operations Research Using Julia.
Weitere Informationen
The state of numerical computing is currently characterized by a divide between highly efficient yet typically cumbersome low-level languages such as C, CCC, and Fortran and highly expressive yet typically slow high-level languages such as Python and MATLAB. This paper explores how Julia, a modern programming language for numerical computing that claims to bridge this divide by incorporating recent advances in language and compiler design (such as just-in-time compilation), can be used for implementing software and algorithms fundamental to the field of operations research, with a focus on mathematical optimization. In particular, we demonstrate algebraic modeling for linear and nonlinear optimization and a partial implementation of a practical simplex code. Extensive cross-language benchmarks suggest that Julia is capable of obtaining state-of-the-art performance. [ABSTRACT FROM AUTHOR]
Copyright of INFORMS Journal on Computing is the property of INFORMS: Institute for Operations Research & the Management Sciences and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)