Treffer: Polynomial time algorithms and extended formulations for unit commitment problems.
Weitere Informationen
Recently, increasing penetration of renewable energy generation has created challenges for power system operators to perform efficient power generation daily scheduling, due to the intermittent nature of the renewable generation and discrete decisions of each generation unit. Among all aspects to be considered, a unit commitment polytope is fundamental and embedded in the models at different stages of power system planning and operations. In this article, we focus on deriving polynomial-time algorithms for the unit commitment problems with a general convex cost function and piecewise linear cost function, respectively. We refine an time, where T represents the number of time periods, algorithm for the deterministic single-generator unit commitment problem with a general convex cost function and accordingly develop an extended formulation in a higher-dimensional space that can provide an integral solution, in which the physical meanings of the decision variables are described. This means the original problem can be solved as a convex program instead of a mixed-integer convex program. Furthermore, for the case in which the cost function is piecewise linear, by exploring the optimality conditions, we derive more efficient algorithms for both deterministic (i.e., time) and stochastic (i.e., time, where N represents the number of nodes in the stochastic scenario tree) single-generator unit commitment problems. We also develop the corresponding extended formulations for both deterministic and stochastic single-generator unit commitment problems that solve the original mixed-integer linear programs as linear programs. Similarly, physical meanings of the decision variables are explored to show the insights of the new modeling approach. [ABSTRACT FROM AUTHOR]
Copyright of IISE Transactions is the property of Taylor & Francis Ltd and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
Volltext ist im Gastzugang nicht verfügbar. Login für vollen Zugriff.