Result: Geomstats: A Python Package for Riemannian Geometry in Machine Learning.
Further Information
We introduce Geomstats, an open-source Python package for computations and statistics on nonlinear manifolds such as hyperbolic spaces, spaces of symmetric positive definite matrices, Lie groups of transformations, and many more. We provide object-oriented and extensively unit-tested implementations. Manifolds come equipped with families of Riemannian metrics with associated exponential and logarithmic maps, geodesics, and parallel transport. Statistics and learning algorithms provide methods for estimation, clustering, and dimension reduction on manifolds. All associated operations are vectorized for batch computation and provide support for different execution backends—namely NumPy, Py- Torch, and TensorFlow. This paper presents the package, compares it with related libraries, and provides relevant code examples. We show that Geomstats provides reliable building blocks to both foster research in differential geometry and statistics and democratize the use of Riemannian geometry in machine learning applications. The source code is freely available under the MIT license at geomstats.ai. [ABSTRACT FROM AUTHOR]
Copyright of Journal of Machine Learning Research is the property of Microtome Publishing and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)