Result: PyQUBO: Python Library for Mapping Combinatorial Optimization Problems to QUBO Form.
Further Information
We present PyQUBO, an open-source Python library for constructing quadratic unconstrained binary optimizations (QUBOs) from the objective functions and the constraints of optimization problems. PyQUBO enables users to prepare QUBOs or Ising models for various combinatorial optimization problems with ease thanks to the abstraction of expressions and the extensibility of the program. QUBOs and Ising models formulated using PyQUBO are solvable by Ising machines, including quantum annealing machines. We introduce the features of PyQUBO with applications in the number partitioning problem, knapsack problem, graph coloring problem, and integer factorization using a binary multiplier. Moreover, we demonstrate how PyQUBO can be applied to production-scale problems through integration with quantum annealing machines. Through its flexibility and ease of use, PyQUBO has the potential to make quantum annealing a more practical tool among researchers. [ABSTRACT FROM AUTHOR]
Copyright of IEEE Transactions on Computers is the property of IEEE and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)