Treffer: Development of NCL equivalent serial and parallel python routines for meteorological data analysis.
Weitere Informationen
The NCAR Command Language (NCL) is a popular scripting language used in the geoscience community for weather data analysis and visualization. Hundreds of years of data are analyzed daily using NCL to make accurate weather predictions. However, due to its sequential nature of execution, it cannot properly utilize the parallel processing power provided by High-Performance Computing systems (HPCs). Until now very few techniques have been developed to make use of the multi-core functionality of modern HPC systems on these functions. In the recent trend, open-source languages are becoming highly popular because they support major functionalities required for data analysis and parallel computing. Hence, developers of NCL have decided to adopt Python as the future scripting language for analysis and visualization and to enable the geosciences community to play an active role in its development and support. This study focuses on developing some of the widely used NCL routines in Python. To deal with the analysis of large datasets, parallel versions of these routines are developed to work within a single node and make use of multi-core CPUs to achieve parallelism. Results show high accuracy between NCL and Python outputs and the parallel versions provided good scaling compared to their sequential counterparts. [ABSTRACT FROM AUTHOR]
Copyright of International Journal of High Performance Computing Applications is the property of Sage Publications Inc. and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)