Treffer: Efficient solution and computation of models with occasionally binding constraints.

Title:
Efficient solution and computation of models with occasionally binding constraints.
Authors:
Boehl, Gregor1 (AUTHOR) gboehl@uni-bonn.de
Source:
Journal of Economic Dynamics & Control. Oct2022, Vol. 143, pN.PAG-N.PAG. 1p.
Database:
Business Source Premier

Weitere Informationen

Structural estimation of macroeconomic models and new HANK-type models with extremely high dimensionality require fast and robust methods to efficiently deal with occasionally binding constraints (OBCs). This paper proposes a novel algorithm that solves for the perfect foresight path of piecewise-linear dynamic models. In terms of computation speed, the method outperforms its competitors by more than three orders of magnitude. I develop a closed-form solution for the full trajectory given the expected duration of the constraint. This allows to quickly iterate and validate guesses on the expected duration until a perfect-foresight equilibrium is found. A toolbox, featuring an efficient implementation, a model parser and various econometric tools, is provided in the Python programming language. Benchmarking results show that for medium-scale models with an occasionally binding interest rate lower bound, more than 150,000 periods can be simulated per second. Even simulating large HANK-type models with almost 1000 endogenous variables requires only 0.2 milliseconds per period. [ABSTRACT FROM AUTHOR]

Copyright of Journal of Economic Dynamics & Control is the property of Elsevier B.V. and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)