Treffer: ReAAP: A Reconfigurable and Algorithm-Oriented Array Processor With Compiler-Architecture Co-Design.
Weitere Informationen
Parallelism and data reuse are the most critical issues for the design of hardware acceleration in a deep learning processor. Besides, abundant on-chip memories and precise data management are intrinsic design requirements because most of deep learning algorithms are data-driven and memory-bound. In this paper, we propose a compiler-architecture co-design scheme targeting a reconfigurable and algorithm-oriented array processor, named ReAAP. Given specific deep neural networks, the proposed co-design scheme is effective to perform parallelism and data reuse optimization on compute-intensive layers for guiding reconfigurable computing in hardware. Especially, the systemic optimization is performed in our proposed domain-specific compiler to deal with the intrinsic tensions between parallelism and data locality, for the purpose of automatically mapping diverse layer-level workloads onto our proposed reconfigurable array architecture. In this architecture, abundant on-chip memories are software-controlled and its massive data access is precisely handled by compiler-generated instructions. In our experiments, the ReAAP is implemented on an embedded FPGA platform. Experimental results demonstrate that our proposed co-design scheme is effective to integrate software flexibility with hardware parallelism for accelerating diverse deep learning workloads. As a whole system, ReAAP achieves a consistently high utilization of hardware resource for accelerating all the diverse compute-intensive layers in ResNet, MobileNet, and BERT. [ABSTRACT FROM AUTHOR]
Copyright of IEEE Transactions on Computers is the property of IEEE and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)