Treffer: A two-stage stochastic programming model for collaborative asset protection routing problem enhanced with machine learning: a learning-based matheuristic algorithm.
Weitere Informationen
In this paper, a two-stage stochastic mathematical model is developed for an asset protection routing problem under a wildfire. The main aim of this study is to reduce the negative impact of a wildfire. Some parameters, such as travel and service times, obtaining profit by protecting an asset, and upper bounds of time windows, are considered as stochastic parameters. Generating proper scenarios for uncertain parameters has a large impact on the accuracy of the obtained solutions. Therefore, artificial neural networks are employed to extract possible scenarios according to previous actual wildfire events. The problem cannot be solved by exact solvers for large instances, so two matheuristic algorithms are proposed in this study to solve the problem in a reasonable time. In the first algorithm, a set of feasible routes is generated based on a heuristic approach, then a route-based mathematical model is used to obtain the final solution. Also, another matheuristic algorithm based on adaptive large neighbourhood search (ALNS) is proposed. In this algorithm, routing decisions are determined using the ALNS algorithm while other decisions are achieved by solving an intermediate mathematical model. The numerical analysis confirms the efficiency of both proposed algorithms; however, the first algorithm performs more efficiently. [ABSTRACT FROM AUTHOR]
Copyright of International Journal of Production Research is the property of Taylor & Francis Ltd and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
Volltext ist im Gastzugang nicht verfügbar. Login für vollen Zugriff.