Treffer: USING DATA MINING IN THE SENTIMENT ANALYSIS PROCESS ON THE FINANCIAL MARKET.

Title:
USING DATA MINING IN THE SENTIMENT ANALYSIS PROCESS ON THE FINANCIAL MARKET.
Authors:
Source:
Journal of Social & Economic Statistics. Dec2022, Vol. 11 Issue 1/2, p36-58. 23p.
Database:
Business Source Premier

Weitere Informationen

Sentiment analysis refers to the analysis of human opinions and sentiments that are expressed in written text, being also a part of the Natural Language Processing (NLP) tasks. Sentiment analysis can be applied in different domains, especially in the corporate marketing and sales, the healthcare system or the financial market analysis. In this paper we aim to highlight how data mining is able to extract the sentiment score from a financial platform that shows the major headlines regarding stocks, in order to highlight the publications' positive or negative opinion over a stock. In order to gain the sentiment score we have scraped text data from the platform Finviz from which the polarity of the opinion may be extracted. We have also used Valence Aware Dictionary for Sentiment Reasoning (VADER), by running a Python script using the BeautifulSoup library. After that we have used Pandas (Python Data Analysis Library) to analyse and obtain a sentiment score on the article headlines. Results show that the script is able to generate the sentiment score for various selected stocks, while also showing graphical diagrams for the past and future trend of the stock, in terms of overall opinion on the stock performance. [ABSTRACT FROM AUTHOR]

Copyright of Journal of Social & Economic Statistics is the property of Sciendo and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)