Treffer: Using machine learning to model the training scalability of convolutional neural networks on clusters of GPUs.
Weitere Informationen
In this work, we build a general piece-wise model to analyze data-parallel (DP) training costs of convolutional neural networks (CNNs) on clusters of GPUs. This general model is based on i) multi-layer perceptrons (MLPs) in charge of modeling the NVIDIA cuDNN/cuBLAS library kernels involved in the training of some of the state-of-the-art CNNs; and ii) an analytical model in charge of modeling the NVIDIA NCCL Allreduce collective primitive using the Ring algorithm. The CNN training scalability study performed using this model in combination with the Roofline technique on varying batch sizes, node (floating-point) arithmetic performance, node memory bandwidth, network link bandwidth, and cluster dimension unveil some crucial bottlenecks at both GPU and cluster level. To provide evidence of this analysis, we validate the accuracy of the proposed model against a Python library for distributed deep learning training. [ABSTRACT FROM AUTHOR]
Copyright of Computing is the property of Springer Nature and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
Volltext ist im Gastzugang nicht verfügbar. Login für vollen Zugriff.