Treffer: Optimized Scenario Reduction: Solving Large-Scale Stochastic Programs with Quality Guarantees.
Weitere Informationen
Stochastic programming involves large-scale optimization with exponentially many scenarios. This paper proposes an optimization-based scenario reduction approach to generate high-quality solutions and tight lower bounds by only solving small-scale instances, with a limited number of scenarios. First, we formulate a scenario subset selection model that optimizes the recourse approximation over a pool of solutions. We provide a theoretical justification of our formulation, and a tailored heuristic to solve it. Second, we propose a scenario assortment optimization approach to compute a lower bound—hence, an optimality gap—by relaxing nonanticipativity constraints across scenario "bundles." To solve it, we design a new column-evaluation-and-generation algorithm, which provides a generalizable method for optimization problems featuring many decision variables and hard-to-estimate objective parameters. We test our approach on stochastic programs with continuous and mixed-integer recourse. Results show that (i) our scenario reduction method dominates scenario reduction benchmarks, (ii) our scenario assortment optimization, combined with column-evaluation-and-generation, yields tight lower bounds, and (iii) our overall approach results in stronger solutions, tighter lower bounds, and faster computational times than state-of-the-art stochastic programming algorithms. History: Accepted by Andrea Lodi, Area Editor for Design and Analysis of Algorithms–Discrete. Supplemental Material: The e-companion is available at https://doi.org/10.1287/ijoc.2023.1295. [ABSTRACT FROM AUTHOR]
Copyright of INFORMS Journal on Computing is the property of INFORMS: Institute for Operations Research & the Management Sciences and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
Volltext ist im Gastzugang nicht verfügbar. Login für vollen Zugriff.