Treffer: Python package for causal discovery based on LiNGAM.
Weitere Informationen
Causal discovery is a methodology for learning causal graphs from data, and LiNGAM is a well-known model for causal discovery. This paper describes an open-source Python package for causal discovery based on LiNGAM. The package implements various LiNGAM methods under different settings like time series cases, multiple-group cases, mixed data cases, and hidden common cause cases, in addition to evaluation of statistical reliability and model assumptions. The source code is freely available under the MIT license at https://github.com/cdt15/lingam. [ABSTRACT FROM AUTHOR]
Copyright of Journal of Machine Learning Research is the property of Microtome Publishing and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)