Result: An adaptive approach for online monitoring of large-scale data streams.
Further Information
In this article, we propose an adaptive top-r method to monitor large-scale data streams where the change may affect a set of unknown data streams at some unknown time. Motivated by parallel and distributed computing, we propose to develop global monitoring schemes by parallel running local detection procedures and then use the Benjamin–Hochberg false discovery rate control procedure to estimate the number of changed data streams adaptively. Our approach is illustrated in two concrete examples: one is a homogeneous case when all data streams are independent and identically distributed with the same known pre-change and post-change distributions. The other is when all data are normally distributed, and the mean shifts are unknown and can be positive or negative. Theoretically, we show that when the pre-change and post-change distributions are completely specified, our proposed method can estimate the number of changed data streams for both the pre-change and post-change status. Moreover, we perform simulations and two case studies to show its detection efficiency. [ABSTRACT FROM AUTHOR]
Copyright of IISE Transactions is the property of Taylor & Francis Ltd and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
Full text is not displayed to guests. Login for full access.