Result: Depth-based statistical analysis in the spike train space.

Title:
Depth-based statistical analysis in the spike train space.
Authors:
Zhou, Xinyu1 (AUTHOR) xz19c@fsu.edu, Wu, Wei1 (AUTHOR)
Source:
Journal of Applied Statistics. Feb2025, Vol. 52 Issue 2, p329-355. 27p.
Database:
Business Source Premier

Further Information

Metric-based summary statistics such as mean and covariance have been introduced in neural spike train space. They can properly describe template and variability in spike train data, but are often sensitive to outliers and expensive to compute. Recent studies also examine outlier detection and classification methods on point processes. These tools provide reasonable result, whereas the accuracy remains at a low level in certain cases. In this study, we propose to adopt a well-established notion of statistical depth to the spike train space. This framework can naturally define the median in a set of spike trains, which provides a robust description of the 'template' of the observations. It also provides a principled method to identify 'outliers' and classify data from different categories. We systematically compare the new median, outlier detection and classification tools with state-of-the-art competing methods. The result shows the median has superior description for template than the mean. Moreover, the proposed outlier detection and classification perform more accurately than previous methods. [ABSTRACT FROM AUTHOR]

Copyright of Journal of Applied Statistics is the property of Taylor & Francis Ltd and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)

Full text is not displayed to guests.