Treffer: Bayesian Inference on Brain-Computer Interfaces via GLASS.
Weitere Informationen
Brain-computer interfaces (BCIs), particularly the P300 BCI, facilitate direct communication between the brain and computers. The fundamental statistical problem in P300 BCIs lies in classifying target and non-target stimuli based on electroencephalogram (EEG) signals. However, the low signal-to-noise ratio (SNR) and complex spatial/temporal correlations of EEG signals present challenges in modeling and computation, especially for individuals with severe physical disabilities—BCI's primary users. To address these challenges, we introduce a novel Gaussian Latent channel model with Sparse time-varying effects (GLASS) under a Bayesian framework. GLASS is built upon a constrained multinomial logistic regression particularly designed for the imbalanced target and non-target stimuli. The novel latent channel decomposition efficiently alleviates strong spatial correlations between EEG channels, while the soft-thresholded Gaussian process (STGP) prior ensures sparse and smooth time-varying effects. We demonstrate GLASS substantially improves BCI's performance in participants with amyotrophic lateral sclerosis (ALS) and identifies important EEG channels (PO8, Oz, PO7, and Pz) in parietal and occipital regions that align with existing literature. For broader accessibility, we develop an efficient gradient-based variational inference (GBVI) algorithm for posterior computation and provide a user-friendly Python module available at . Supplementary materials for this article are available online, including a standardized description of the materials available for reproducing the work. [ABSTRACT FROM AUTHOR]
Copyright of Journal of the American Statistical Association is the property of Taylor & Francis Ltd and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)