Treffer: A robust heuristic for the Generalized Assignment Problem.
Weitere Informationen
The Generalized Assignment Problem, in the class of NP-hard problems, occurs in a wide range of applications — vehicle packing, computers, and logistics, to name only a few. Previous research has been concentrated on optimization methodologies for the GAP. Because the Generalized Assignment Problem is NP-hard, optimization methods tend to require larger computation times for large-scale problems. This paper presents a new heuristic, Variable-Depth-Search Heuristic (VDSH). We show that on the sets of large test problems, the quality of the solution found by VDSH exceeds that of the leading heuristic by an average of over twenty percent, while maintaining acceptable solution times. On difficult problem instances, VDSH provides solutions having costs 140% less than those found by the leading heuristic. A duality gap analysis of VDSH demonstrates the robustness of our heuristics. [ABSTRACT FROM AUTHOR]
Copyright of Annals of Operations Research is the property of Springer Nature and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)