Treffer: Combining ChatGPT and knowledge graph for explainable machine learning-driven design: a case study.
Weitere Informationen
Machine learning has been widely used in design activities, enabling more informed decision-making. However, high-performance machine learning models, often referred to as 'black-box', result in a lack of explainability regarding predictions. The absence of explainability erodes the trust between designers and these models and hinders human-machine collaboration for desirable design decisions. Explainable AI focuses on creating explanations that are accessible and comprehensible to stakeholders, thereby improving explainability. A recent advancement in the field of explainable AI involves leveraging domain-specific knowledge via knowledge graph. Additionally, the advent of large language models like ChatGPT, acclaimed for their ability to output domain knowledge, perform complex language processing, and support seamless end-user interaction, has the potential to expand the horizons of explainable AI. Inspired by these developments, we propose the novel hybrid method that synergizes ChatGPT and knowledge graph to augment post-hoc explainability in design context. The outcome is the generation of more contextual and meaningful explanations, with the added possibility of further interaction to uncover deeper insights. The effectiveness of the proposed method is illustrated through a case study on customer segmentation. [ABSTRACT FROM AUTHOR]
Copyright of Journal of Engineering Design is the property of Taylor & Francis Ltd and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
Volltext ist im Gastzugang nicht verfügbar. Login für vollen Zugriff.