Treffer: Primal-dual proximal bundle and conditional gradient methods for convex problems.
Weitere Informationen
This paper studies the primal-dual convergence and iteration-complexity of proximal bundle methods for solving nonsmooth problems with convex structures. More specifically, we develop a family of primal-dual proximal bundle methods for solving convex nonsmooth composite optimization problems and establish the iteration-complexity in terms of a primal-dual gap. We also propose a class of proximal bundle methods for solving convex-concave nonsmooth composite saddle-point problems and establish the iteration-complexity to find an approximate saddle-point. This paper places special emphasis on the primal-dual perspective of the proximal bundle method. In particular, we discover an interesting duality between the conditional gradient method and the cutting-plane scheme used within the proximal bundle method. Leveraging this duality, we further develop novel variants of both the conditional gradient method and the cutting-plane scheme. Additionally, we report numerical experiments to demonstrate the effectiveness and efficiency of the proposed proximal bundle methods in comparison with the subgradient method for solving a regularized matrix game. [ABSTRACT FROM AUTHOR]
Copyright of Mathematical Programming is the property of Springer Nature and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)