Treffer: An interior-point approach for primal block-angular problems.

Title:
An interior-point approach for primal block-angular problems.
Authors:
Castro, Jordi1 jordi.castro@upc.edu
Source:
Computational Optimization & Applications. Mar2007, Vol. 36 Issue 2/3, p195-219. 25p. 20 Charts, 2 Graphs.
Database:
Business Source Premier

Weitere Informationen

Multicommodity flows belong to the class of primal block-angular problems. An efficient interior-point method has already been developed for linear and quadratic network optimization problems. It solved normal equations, using sparse Cholesky factorizations for diagonal blocks, and a preconditioned conjugate gradient for linking constraints. In this work we extend this procedure, showing that the preconditioner initially developed for multicommodity flows applies to any primal block-angular problem, although its efficiency depends on each particular linking constraints structure. We discuss the conditions under which the preconditioner is effective. The procedure is implemented in a user-friendly package in the MATLAB environment. Computational results are reported for four primal block-angular problems: multicommodity flows, nonoriented multicommodity flows, minimum-distance controlled tabular adjustment for statistical data protection, and the minimum congestion problem. The results show that this procedure holds great potential for solving large primal-block angular problems efficiently. [ABSTRACT FROM AUTHOR]

Copyright of Computational Optimization & Applications is the property of Springer Nature and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)