Treffer: Cost-oriented task allocation and hardware redundancy policies in heterogeneous distributed computing systems considering software reliability
Weitere Informationen
Abstract: Task allocation policy and hardware redundancy policy for distributed computing system (DCS) are of great importance as they affect many system characteristics such as system cost, system reliability and performance. In recent years, abundant research has been carried out on the optimal task allocation and/or hardware redundancy problem, most of which took a reliability-oriented approach, i.e., the optimization criterion was system reliability maximization. Nevertheless, besides system reliability, other system characteristics such as system cost may be of great concern to management. In this paper, we take a cost-oriented approach to the optimal task allocation and hardware redundancy problem for DCS, which addresses both system cost and system reliability issues. A system cost model which could reflect the impact of system unreliability on system cost is developed, and by minimizing the total system cost, a satisfactory level of system reliability could be reached simultaneously. In the reliability modeling and analysis of DCS, we take both hardware reliability and software reliability into account. Two numerical examples are given to illustrate the formulation and solution procedures, in which genetic algorithm is used. Results show that based on the developed system cost model, appropriate decision-makings on task allocation and hardware redundancy policies for DCS could be made, and the result obtained seems to be a fairly good trade-off between system cost and system reliability. [Copyright &y& Elsevier]
Copyright of Computers & Industrial Engineering is the property of Pergamon Press - An Imprint of Elsevier Science and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)