Treffer: Inference for two-stage adaptive treatment strategies using mixture distributions.
Weitere Informationen
Treatment of complex diseases such as cancer, leukaemia, acquired immune deficiency syndrome and depression usually follows complex treatment regimes consisting of time varying multiple courses of the same or different treatments. The goal is to achieve the largest overall benefit defined by a common end point such as survival. Adaptive treatment strategy refers to a sequence of treatments that are applied at different stages of therapy based on the individual's history of covariates and intermediate responses to the earlier treatments. However, in many cases treatment assignment depends only on intermediate response and prior treatments. Clinical trials are often designed to compare two or more adaptive treatment strategies. A common approach that is used in these trials is sequential randomization. Patients are randomized on entry into available first-stage treatments and then on the basis of the response to the initial treatments are randomized to second-stage treatments, and so on. The analysis often ignores this feature of randomization and frequently conducts separate analysis for each stage. Recent literature suggested several semiparametric and Bayesian methods for inference related to adaptive treatment strategies from sequentially randomized trials. We develop a parametric approach using mixture distributions to model the survival times under different adaptive treatment strategies. We show that the estimators proposed are asymptotically unbiased and can be easily implemented by using existing routines in statistical software packages. [ABSTRACT FROM AUTHOR]
Copyright of Journal of the Royal Statistical Society: Series C (Applied Statistics) is the property of Oxford University Press / USA and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)