Treffer: Fixpoint Logics over Hierarchical Structures.
Weitere Informationen
Hierarchical graph definitions allow a modular description of graphs using modules for the specification of repeated substructures. Beside this modularity, hierarchical graph definitions also allow to specify graphs of exponential size using polynomial size descriptions. In many cases, this succinctness increases the computational complexity of decision problems. In this paper, the model-checking problem for the modal μ-calculus and (monadic) least fixpoint logic on hierarchically defined input graphs is investigated. In order to analyze the modal μ-calculus, parity games on hierarchically defined input graphs are investigated. Precise upper and lower complexity bounds are derived. A restriction on hierarchical graph definitions that leads to more efficient model-checking algorithms is presented. [ABSTRACT FROM AUTHOR]
Copyright of Theory of Computing Systems is the property of Springer Nature and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)