Treffer: The nonlinear resource allocation problem.

Title:
The nonlinear resource allocation problem.
Source:
Operations Research. Jul/Aug1995, Vol. 43 Issue 4, p670. 14p. 11 Charts.
Database:
Business Source Premier

Weitere Informationen

In this paper we study the nonlinear resource allocation problem, defined as the minimization of a convex function over one convex constraint and bounded integer variables. This problem is encountered in a variety of applications, including capacity planning in manufacturing and computer networks, production planning, capital budgeting, and stratified sampling. Despite its importance to these and other applications, the nonlinear resource allocation problem has received little attention in the literature. Therefore, we develop a branch-and-bound algorithm to solve this class of problems. First we present a general framework for solving the continuous-variable problem. Then we use this framework as the basis for our branch-and-bound method. We also develop reoptimization procedures and a heuristic that significantly improve the performance of the branch-and-bound algorithm. In addition, we show how the algorithm can be modified to solve nonconvex problems so that a concave objective function can be handled. The general algorithm is specialized for the applications mentioned above and computational results are reported for problems with up to 200 integer variables. A computational comparison with a 0, 1 linearization approach is also provided. [ABSTRACT FROM AUTHOR]

Copyright of Operations Research is the property of INFORMS: Institute for Operations Research & the Management Sciences and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)