Serviceeinschränkungen vom 12.-22.02.2026 - weitere Infos auf der UB-Homepage
American Psychological Association 6th edition

Zhong, Y., Salucci, M., Xu, K., Polo, A., & Massa, A. (2020). A Multiresolution Contraction Integral Equation Method for Solving Highly Nonlinear Inverse Scattering Problems. IEEE Transactions on Microwave Theory & Techniques, 68(4), 1234-1247. https://doi.org/10.1109/TMTT.2019.2956939

ISO-690 (author-date, English)

ZHONG, Yu, SALUCCI, Marco, XU, Kuiwen, POLO, Alessandro und MASSA, Andrea, 2020. A Multiresolution Contraction Integral Equation Method for Solving Highly Nonlinear Inverse Scattering Problems. IEEE Transactions on Microwave Theory & Techniques. 1 April 2020. Vol. 68, no. 4, p. 1234-1247. DOI 10.1109/TMTT.2019.2956939.

Modern Language Association 9th edition

Zhong, Y., M. Salucci, K. Xu, A. Polo, und A. Massa. „A Multiresolution Contraction Integral Equation Method for Solving Highly Nonlinear Inverse Scattering Problems.“. IEEE Transactions on Microwave Theory & Techniques, Bd. 68, Nr. 4, April 2020, S. 1234-47, https://doi.org/10.1109/TMTT.2019.2956939.

Mohr Siebeck - Recht (Deutsch - Österreich)

Zhong, Yu/Salucci, Marco/Xu, Kuiwen/Polo, Alessandro/Massa, Andrea: A Multiresolution Contraction Integral Equation Method for Solving Highly Nonlinear Inverse Scattering Problems., IEEE Transactions on Microwave Theory & Techniques 2020, 1234-1247.

Emerald - Harvard

Zhong, Y., Salucci, M., Xu, K., Polo, A. und Massa, A. (2020), „A Multiresolution Contraction Integral Equation Method for Solving Highly Nonlinear Inverse Scattering Problems.“, IEEE Transactions on Microwave Theory & Techniques, Vol. 68 No. 4, S. 1234-1247.

Achtung: Diese Zitate sind unter Umständen nicht zu 100% korrekt.