Treffer: MR image reconstruction algorithms for sparse k-space data: a Java-based integration.

Title:
MR image reconstruction algorithms for sparse k-space data: a Java-based integration.
Authors:
de Beer R; Department of Applied Physics, University of Technology Delft, PO Box 5046, 2600 GA Delft, The Netherlands. beer@si.tn.tudelft.nl, Coron A, Graveron-Demilly D, Lethmate R, Nastase S, van Ormondt D, Wajer FT
Source:
Magma (New York, N.Y.) [MAGMA] 2002 Nov; Vol. 15 (1-3), pp. 18-26.
Publication Type:
Evaluation Study; Journal Article; Research Support, Non-U.S. Gov't
Language:
English
Journal Info:
Publisher: Springer Country of Publication: Germany NLM ID: 9310752 Publication Model: Print Cited Medium: Print ISSN: 0968-5243 (Print) Linking ISSN: 09685243 NLM ISO Abbreviation: MAGMA Subsets: MEDLINE
Imprint Name(s):
Publication: 2003- : Heidelberg : Springer
Original Publication: New York, NY : Chapman & Hall, c1993-
References:
Magn Reson Med. 1994 Aug;32(2):268-74. (PMID: 7968453)
Magn Reson Med. 1998 Feb;39(2):244-50. (PMID: 9469707)
Magn Reson Med. 1999 Oct;42(4):729-37. (PMID: 10502762)
Magn Reson Med. 1995 Feb;33(2):163-70. (PMID: 7707905)
Magn Reson Med. 1993 Mar;29(3):345-51. (PMID: 8450743)
Magn Reson Med. 1996 Sep;36(3):345-51. (PMID: 8875403)
J Magn Reson Imaging. 1993 Nov-Dec;3(6):925-8. (PMID: 8280985)
J Magn Reson B. 1996 Aug;112(2):119-23. (PMID: 8812895)
Magn Reson Med. 1999 Nov;42(5):952-62. (PMID: 10542355)
Magn Reson Med. 2000 Feb;43(2):177-84. (PMID: 10680680)
J Magn Reson Imaging. 1993 Jul-Aug;3(4):671-5. (PMID: 8347963)
Magn Reson Med. 1997 Dec;38(6):938-42. (PMID: 9402195)
Magn Reson Med. 2000 Jul;44(1):56-65. (PMID: 10893522)
Magn Reson Med. 2001 Aug;46(2):264-71. (PMID: 11477629)
Magn Reson Med. 1997 Aug;38(2):337-41. (PMID: 9256116)
Entry Date(s):
Date Created: 20021105 Date Completed: 20030507 Latest Revision: 20191210
Update Code:
20250114
DOI:
10.1007/BF02693840
PMID:
12413561
Database:
MEDLINE

Weitere Informationen

We have worked on multi-dimensional magnetic resonance imaging (MRI) data acquisition and related image reconstruction methods that aim at reducing the MRI scan time. To achieve this scan-time reduction we have combined the approach of 'increasing the speed' of k-space acquisition with that of 'deliberately omitting' acquisition of k-space trajectories (sparse sampling). Today we have a whole range of (sparse) sampling distributions and related reconstruction methods. In the context of a European Union Training and Mobility of Researchers project we have decided to integrate all methods into one coordinating software system. This system meets the requirements that it is highly structured in an object-oriented manner using the Unified Modeling Language and the Java programming environment, that it uses the client-server approach, that it allows multi-client communication sessions with facilities for sharing data and that it is a true distributed computing system with guaranteed reliability using core activities of the Java Jini package.
(Copyright 2002 Elsevier Science B.V.)