Serviceeinschränkungen vom 12.-22.02.2026 - weitere Infos auf der UB-Homepage

Treffer: Tracing dynamic biological processes during phase transition.

Title:
Tracing dynamic biological processes during phase transition.
Authors:
Zeng T; Key Laboratory of Systems Biology, SIBS-Novo Nordisk Translational Research Centre for PreDiabetes, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China., Chen L
Source:
BMC systems biology [BMC Syst Biol] 2012; Vol. 6 Suppl 1, pp. S12. Date of Electronic Publication: 2012 Jul 16.
Publication Type:
Journal Article; Research Support, Non-U.S. Gov't
Language:
English
Journal Info:
Publisher: BioMed Central Country of Publication: England NLM ID: 101301827 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1752-0509 (Electronic) Linking ISSN: 17520509 NLM ISO Abbreviation: BMC Syst Biol Subsets: MEDLINE
Imprint Name(s):
Original Publication: London : BioMed Central
Comments:
Erratum in: BMC Syst Biol. 2012 Jul 16;6 Suppl 1:S23.
References:
Oncogene. 2003 Nov 6;22(50):8102-16. (PMID: 14603251)
Nucleic Acids Res. 2007 Jul;35(Web Server issue):W193-200. (PMID: 17478515)
Proc Natl Acad Sci U S A. 2010 Jul 13;107(28):12511-6. (PMID: 20571120)
J Mol Cell Biol. 2012 Jun;4(3):140-52. (PMID: 22467683)
Biotechniques. 2003 Feb;34(2):374-8. (PMID: 12613259)
IEEE/ACM Trans Comput Biol Bioinform. 2004 Jan-Mar;1(1):24-45. (PMID: 17048406)
Nucleic Acids Res. 2011 Jan;39(Database issue):D561-8. (PMID: 21045058)
PLoS Comput Biol. 2008 Aug 15;4(8):e1000117. (PMID: 18704157)
Bioinformatics. 2011 Feb 1;27(3):431-2. (PMID: 21149340)
Anal Biochem. 2004 Jun 15;329(2):230-7. (PMID: 15158481)
J Exp Bot. 2007;58(5):1035-45. (PMID: 17244630)
Sci Rep. 2012;2:342. (PMID: 22461973)
Bioinformatics. 2005 Apr 1;21(7):1280-1. (PMID: 15546938)
Nucleic Acids Res. 2009 Feb;37(3):825-31. (PMID: 19095691)
Mol Syst Biol. 2010 Jun 22;6:385. (PMID: 20571534)
BMC Genomics. 2008;9 Suppl 1:S4. (PMID: 18366617)
Proc Natl Acad Sci U S A. 2004 Dec 21;101(51):17611-5. (PMID: 15591108)
Bioinformatics. 2005 Oct 15;21(20):3840-5. (PMID: 16144809)
Nat Genet. 2000 May;25(1):25-9. (PMID: 10802651)
HFSP J. 2009 Aug;3(4):255-64. (PMID: 20119482)
EMBO Rep. 2010 Oct;11(10):805-10. (PMID: 20847737)
Bioinformatics. 2008 Nov 1;24(21):2491-7. (PMID: 18784117)
Genes Dev. 2006 Aug 15;20(16):2266-78. (PMID: 16912276)
Genes Dev. 2002 Dec 1;16(23):3034-45. (PMID: 12464633)
Pac Symp Biocomput. 2009;:203-14. (PMID: 19209702)
Genome Biol. 2007;8(3):R39. (PMID: 17367534)
Mol Biol Cell. 1998 Dec;9(12):3273-97. (PMID: 9843569)
Nucleic Acids Res. 2007 Jan;35(Database issue):D208-12. (PMID: 17108361)
J Control Release. 2011 Jul 15;153(1):34-9. (PMID: 21406205)
Nucleic Acids Res. 2006;34(22):e151. (PMID: 17130162)
PLoS Comput Biol. 2011 Sep;7(9):e1002180. (PMID: 21980275)
IEEE/ACM Trans Comput Biol Bioinform. 2010 Jan-Mar;7(1):153-65. (PMID: 20150677)
PLoS One. 2011;6(7):e21502. (PMID: 21799737)
Nucleic Acids Res. 2000 Jan 1;28(1):27-30. (PMID: 10592173)
Cancer Res. 2003 May 1;63(9):2109-17. (PMID: 12727827)
Genome Biol. 2007;8(11):R252. (PMID: 18042286)
Entry Date(s):
Date Created: 20121011 Date Completed: 20130403 Latest Revision: 20211021
Update Code:
20250114
PubMed Central ID:
PMC3403121
DOI:
10.1186/1752-0509-6-S1-S12
PMID:
23046764
Database:
MEDLINE

Weitere Informationen

Background: Phase transition widely exists in the biological world, such as transformation of cell cycle phases, cell differentiation stages, disease development, and so on. Such a nonlinear phenomenon is considered as the conversion of a biological system from one phenotype/state to another. Studies on the molecular mechanisms of biological phase transition have attracted much attention, in particular, on different genotypes (or expression variations) in a specific phase, but with less of focus on cascade changes of genes' functions (or system state) during the phase shift or transition process. However, it is a fundamental but important mission to trace the temporal characteristics of a biological system during a specific phase transition process, which can offer clues for understanding dynamic behaviors of living organisms.
Results: By overcoming the hurdles of traditional time segmentation and temporal biclustering methods, a causal process model (CPM) in the present work is proposed to study the biological phase transition in a systematic manner, i.e. first, we make gene-specific segmentation on time-course expression data by developing a new boundary gene estimation scheme, and then infer functional cascade dynamics by constructing a temporal block network. After the computational validation on synthetic data, CPM was used to analyze the well-known Yeast cell cycle data. It was found that the dynamics of the boundary genes are periodic and consistent with the phases of the cell cycle, and the temporal block network indeed demonstrates a meaningful cascade structure of the enriched biological functions. In addition, we further studied protein modules based on the temporal block network, which reflect temporal features in different cycles.
Conclusions: All of these results demonstrate that CPM is effective and efficient comparing to traditional methods, and is able to elucidate essential regulatory mechanism of a biological system even with complicated nonlinear phase transitions.