Serviceeinschränkungen vom 12.-22.02.2026 - weitere Infos auf der UB-Homepage

Treffer: A novel procedure for statistical inference and verification of gene regulatory subnetwork.

Title:
A novel procedure for statistical inference and verification of gene regulatory subnetwork.
Source:
BMC bioinformatics [BMC Bioinformatics] 2015; Vol. 16 Suppl 7, pp. S7. Date of Electronic Publication: 2015 Apr 23.
Publication Type:
Journal Article
Language:
English
Journal Info:
Publisher: BioMed Central Country of Publication: England NLM ID: 100965194 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1471-2105 (Electronic) Linking ISSN: 14712105 NLM ISO Abbreviation: BMC Bioinformatics Subsets: MEDLINE
Imprint Name(s):
Original Publication: [London] : BioMed Central, 2000-
References:
Mol Biol Cell. 1998 Dec;9(12):3273-97. (PMID: 9843569)
Bioinformatics. 2003 Oct;19 Suppl 2:ii138-48. (PMID: 14534183)
Bioinformatics. 2004 Dec 12;20(18):3594-603. (PMID: 15284094)
Bioinformatics. 2005 Mar 1;21(5):631-43. (PMID: 15374862)
BMC Bioinformatics. 2007;8:60. (PMID: 17316436)
Biostatistics. 2008 Jan;9(1):100-13. (PMID: 17513311)
BMC Syst Biol. 2008;2:8. (PMID: 18218091)
Bioinformatics. 2009 Mar 15;25(6):714-21. (PMID: 19176549)
BMC Bioinformatics. 2010;11 Suppl 7:S10. (PMID: 21106117)
J Bioinform Comput Biol. 2011 Dec;9 Suppl 1:63-73. (PMID: 22144254)
BMC Bioinformatics. 2012;13 Suppl 9:S3. (PMID: 22901088)
Bioinformatics. 2013 Jun 15;29(12):1583-5. (PMID: 23589651)
BMC Syst Biol. 2013;7 Suppl 3:S5. (PMID: 24555417)
BMC Syst Biol. 2014;8 Suppl 1:S3. (PMID: 24565114)
Bioinformatics. 2000 Aug;16(8):727-34. (PMID: 11099258)
J Comput Biol. 2000;7(3-4):601-20. (PMID: 11108481)
Pac Symp Biocomput. 2002;:175-86. (PMID: 11928473)
Bioinformatics. 2002;18 Suppl 1:S241-8. (PMID: 12169553)
Brief Bioinform. 2003 Sep;4(3):228-35. (PMID: 14582517)
Biosystems. 2004 Jul;75(1-3):57-65. (PMID: 15245804)
Brief Bioinform. 2014 Sep;15(5):768-70. (PMID: 23894105)
BMC Syst Biol. 2014;8 Suppl 4:S3. (PMID: 25522186)
Pac Symp Biocomput. 1999;:29-40. (PMID: 10380183)
Entry Date(s):
Date Created: 20150509 Date Completed: 20151013 Latest Revision: 20181202
Update Code:
20250114
PubMed Central ID:
PMC4423581
DOI:
10.1186/1471-2105-16-S7-S7
PMID:
25952938
Database:
MEDLINE

Weitere Informationen

Background: The reconstruction of gene regulatory network from time course microarray data can help us comprehensively understand the biological system and discover the pathogenesis of cancer and other diseases. But how to correctly and efficiently decifer the gene regulatory network from high-throughput gene expression data is a big challenge due to the relatively small amount of observations and curse of dimensionality. Computational biologists have developed many statistical inference and machine learning algorithms to analyze the microarray data. In the previous studies, the correctness of an inferred regulatory network is manually checked through comparing with public database or an existing model.
Results: In this work, we present a novel procedure to automatically infer and verify gene regulatory networks from time series expression data. The dynamic Bayesian network, a statistical inference algorithm, is at first implemented to infer an optimal network from time series microarray data of S. cerevisiae, then, a weighted symbolic model checker is applied to automatically verify or falsify the inferred network through checking some desired temporal logic formulas abstracted from experiments or public database.
Conclusions: Our studies show that the marriage of statistical inference algorithm with model checking technique provides a more efficient way to automatically infer and verify the gene regulatory network from time series expression data than previous studies.