Treffer: Inferring the perturbation time from biological time course data.
Plant Physiol. 2010 Jan;152(1):267-80. (PMID: 19889874)
Nat Plants. 2015 Jun 01;1:15074. (PMID: 27250009)
EMBO J. 2007 Mar 7;26(5):1434-43. (PMID: 17304219)
Bioinformatics. 2010 Jan 1;26(1):139-40. (PMID: 19910308)
New Phytol. 2016 Feb;209(3):1120-34. (PMID: 26428397)
PLoS One. 2013 Jun 20;8(6):e67467. (PMID: 23818978)
J Comput Biol. 2000;7(6):819-37. (PMID: 11382364)
BMC Bioinformatics. 2010 Aug 10;11:422. (PMID: 20698981)
Bioinformatics. 2004 Nov 1;20(16):2493-503. (PMID: 15130923)
Bioinformatics. 2015 Mar 1;31(5):728-35. (PMID: 25355790)
Plant Physiol. 2005 Dec;139(4):1773-83. (PMID: 16299173)
Trends Immunol. 2014 Jul;35(7):345-51. (PMID: 24946686)
Genome Biol. 2010;11(10):R106. (PMID: 20979621)
Plant Physiol. 2012 Aug;159(4):1845-56. (PMID: 22730426)
Cell Host Microbe. 2014 Sep 10;16(3):364-75. (PMID: 25211078)
Plant J. 2000 Aug;23(4):441-50. (PMID: 10972870)
Proc Natl Acad Sci U S A. 2010 Apr 27;107(17 ):7793-8. (PMID: 20385836)
Plant Signal Behav. 2008 Apr;3(4):272-4. (PMID: 19704652)
BMC Bioinformatics. 2008 Oct 06;9:415. (PMID: 18837969)
Proc Natl Acad Sci U S A. 2004 Jun 29;101(26):9927-32. (PMID: 15210989)
Biochem J. 1969 Dec;115(4):679-85. (PMID: 4311439)
Plant Cell. 2010 Jun;22(6):2033-44. (PMID: 20571112)
Bioinformatics. 2006 May 1;22(9):1096-102. (PMID: 16481333)
Plant Cell. 2013 Oct;25(10):3871-84. (PMID: 24179127)
Plant Cell. 2012 May;24(5):2225-36. (PMID: 22643122)
Plant J. 2009 Aug;59(3):375-86. (PMID: 19392690)
Plant Cell. 2015 Nov;27(11):3038-64. (PMID: 26566919)
Plant Cell. 2009 Jul;21(7):2179-89. (PMID: 19622802)
Proc Natl Acad Sci U S A. 2005 Sep 6;102(36):12837-42. (PMID: 16141318)
BMC Plant Biol. 2014 Nov 29;14:317. (PMID: 25432266)
BMC Bioinformatics. 2011 May 20;12:180. (PMID: 21599902)
BMC Bioinformatics. 2013 Oct 18;14:310. (PMID: 24134721)
Plant Cell Environ. 2006 Sep;29(9):1761-70. (PMID: 16913865)
Trends Plant Sci. 2005 Apr;10(4):195-200. (PMID: 15817421)
Bioinformatics. 2008 Aug 15;24(16):i70-5. (PMID: 18689843)
J Comput Biol. 2010 Mar;17(3):355-67. (PMID: 20377450)
PLoS Genet. 2015 May 07;11(5):e1005200. (PMID: 25950582)
Weitere Informationen
Motivation: Time course data are often used to study the changes to a biological process after perturbation. Statistical methods have been developed to determine whether such a perturbation induces changes over time, e.g. comparing a perturbed and unperturbed time course dataset to uncover differences. However, existing methods do not provide a principled statistical approach to identify the specific time when the two time course datasets first begin to diverge after a perturbation; we call this the perturbation time. Estimation of the perturbation time for different variables in a biological process allows us to identify the sequence of events following a perturbation and therefore provides valuable insights into likely causal relationships.
Results: We propose a Bayesian method to infer the perturbation time given time course data from a wild-type and perturbed system. We use a non-parametric approach based on Gaussian Process regression. We derive a probabilistic model of noise-corrupted and replicated time course data coming from the same profile before the perturbation time and diverging after the perturbation time. The likelihood function can be worked out exactly for this model and the posterior distribution of the perturbation time is obtained by a simple histogram approach, without recourse to complex approximate inference algorithms. We validate the method on simulated data and apply it to study the transcriptional change occurring in Arabidopsis following inoculation with Pseudomonas syringae pv. tomato DC3000 versus the disarmed strain DC3000hrpA AVAILABILITY AND IMPLEMENTATION: : An R package, DEtime, implementing the method is available at https://github.com/ManchesterBioinference/DEtime along with the data and code required to reproduce all the results.
Contact: Jing.Yang@manchester.ac.uk or Magnus.Rattray@manchester.ac.uk
Supplementary Information: Supplementary data are available at Bioinformatics online.
(© The Author 2016. Published by Oxford University Press.)