Treffer: A Relaxed Directional Random Walk Model for Phylogenetic Trait Evolution.
Original Publication: Washington, D.C., USA : Society of Systematic Biologists, [1992-
J Theor Biol. 2012 Dec 7;314:204-15. (PMID: 22940235)
PLoS Biol. 2006 May;4(5):e88. (PMID: 16683862)
Am Nat. 2004 Dec;164(6):683-695. (PMID: 29641928)
Trends Ecol Evol. 2004 Sep;19(9):475-81. (PMID: 16701310)
Science. 2014 Oct 3;346(6205):56-61. (PMID: 25278604)
Proc Biol Sci. 2006 Jul 7;273(1594):1619-24. (PMID: 16769632)
PLoS Pathog. 2013;9(7):e1003477. (PMID: 23853594)
PLoS Comput Biol. 2009 Sep;5(9):e1000520. (PMID: 19779555)
Proc Natl Acad Sci U S A. 2007 May 8;104(19):7993-8. (PMID: 17470818)
Syst Biol. 2016 Mar;65(2):250-64. (PMID: 26526428)
Nat Immunol. 2004 Mar;5(3):233-6. (PMID: 14985706)
Virol J. 2013 Jul 16;10:236. (PMID: 23855930)
J Mol Evol. 1980 Dec;16(2):111-20. (PMID: 7463489)
Proc Natl Acad Sci U S A. 2007 Nov 20;104(47):18404-8. (PMID: 18003931)
Evolution. 2003 Jun;57(6):1237-47. (PMID: 12894932)
PLoS Curr. 2009 Sep 02;1:RRN1031. (PMID: 20029613)
Proc Natl Acad Sci U S A. 2012 Sep 11;109(37):15066-71. (PMID: 22927414)
Proc Biol Sci. 2015 Dec 22;282(1821):20142878. (PMID: 26702033)
J Mol Evol. 1985;22(2):160-74. (PMID: 3934395)
Mol Biol Evol. 2011 Jan;28(1):729-44. (PMID: 20926596)
Nature. 2008 Oct 2;455(7213):613-9. (PMID: 18833271)
Nature. 1985 Jul 4-10;316(6023):69-72. (PMID: 2989706)
J Mol Evol. 1981;17(6):368-76. (PMID: 7288891)
Evolution. 2006 May;60(5):922-33. (PMID: 16817533)
Evolution. 2012 Aug;66(8):2369-83. (PMID: 22834738)
Trends Ecol Evol. 2010 Nov;25(11):626-32. (PMID: 20863591)
Nat Rev Immunol. 2002 Sep;2(9):706-13. (PMID: 12209139)
Syst Biol. 2016 Jul;65(4):651-61. (PMID: 26865274)
Evolution. 2011 Dec;65(12):3578-89. (PMID: 22133227)
Mol Biol Evol. 2012 Jun;29(6):1533-43. (PMID: 22319149)
Mol Biol Evol. 2013 Mar;30(3):713-24. (PMID: 23180580)
Nat Med. 2010 Sep;16(9):995-7. (PMID: 20802498)
Am J Hum Genet. 1973 Sep;25(5):471-92. (PMID: 4741844)
Proc Biol Sci. 2012 Jun 7;279(1736):2180-7. (PMID: 22298850)
Evolution. 2012 Dec;66(12):3931-44. (PMID: 23206147)
Evolution. 1996 Aug;50(4):1404-1417. (PMID: 28565714)
Biometrics. 2005 Sep;61(3):665-73. (PMID: 16135017)
Mol Biol Evol. 2012 Aug;29(8):1969-73. (PMID: 22367748)
Methods Ecol Evol. 2015 Jan 1;6(1):67-82. (PMID: 25780554)
PLoS Negl Trop Dis. 2013 Aug 22;7(8):e2365. (PMID: 23991230)
Elife. 2014;3:e01914. (PMID: 24497547)
BMC Biol. 2010 Aug 31;8:114. (PMID: 20807414)
Science. 2004 Jan 16;303(5656):327-32. (PMID: 14726583)
Proc Natl Acad Sci U S A. 2008 Jul 22;105(29):10057-60. (PMID: 18645183)
Proc Natl Acad Sci U S A. 2009 Oct 27;106(43):18067-72. (PMID: 19805160)
Syst Biol. 2017 Jan 1;66(1):e47-e65. (PMID: 28173504)
Science. 2009 Oct 9;326(5950):285-9. (PMID: 19729618)
J Virol. 2000 Nov;74(22):10498-507. (PMID: 11044094)
J Virol. 2011 Jul;85(14):7236-45. (PMID: 21561918)
Evolution. 2012 Jan;66(1):135-46. (PMID: 22220870)
Science. 2008 May 9;320(5877):760-4. (PMID: 18467582)
Sci Transl Med. 2015 Sep 30;7(307):307rv5. (PMID: 26424572)
BMC Evol Biol. 2014 Sep 10;14:184. (PMID: 25319928)
J Mol Evol. 1994 Sep;39(3):306-14. (PMID: 7932792)
Biometrics. 1996 Mar;52(1):193-210. (PMID: 8934592)
Evolution. 2012 Mar;66(3):752-762. (PMID: 22380438)
J Acquir Immune Defic Syndr. 2005 Dec 1;40(4):456-62. (PMID: 16280702)
Syst Biol. 2016 Nov;65(6):1041-1056. (PMID: 27368344)
Evolution. 1997 Oct;51(5):1341-1351. (PMID: 28568616)
Mol Biol Evol. 2010 Aug;27(8):1877-85. (PMID: 20203288)
Evolution. 2000 Apr;54(2):397-405. (PMID: 10937216)
AIDS Res Hum Retroviruses. 2005 Jul;21(7):661-6. (PMID: 16060838)
Evolution. 2008 Aug;62(8):1965-77. (PMID: 18452574)
AIDS Res Hum Retroviruses. 2004 Sep;20(9):1005-9. (PMID: 15585087)
Emerg Infect Dis. 2004 Jul;10(7):1227-34. (PMID: 15324542)
AIDS Res Hum Retroviruses. 2004 Dec;20(12):1352-7. (PMID: 15650428)
AIDS Res Hum Retroviruses. 2000 May 1;16(7):613-9. (PMID: 10791871)
Mol Biol Evol. 2010 Apr;27(4):811-8. (PMID: 19965886)
Science. 2010 Aug 13;329(5993):811-7. (PMID: 20616231)
Annu Rev Immunol. 2010;28:413-44. (PMID: 20192810)
N Engl J Med. 2007 May 17;356(20):2073-81. (PMID: 17507706)
Infect Genet Evol. 2006 Sep;6(5):337-43. (PMID: 16473564)
Weitere Informationen
Understanding the processes that give rise to quantitative measurements associated with molecular sequence data remains an important issue in statistical phylogenetics. Examples of such measurements include geographic coordinates in the context of phylogeography and phenotypic traits in the context of comparative studies. A popular approach is to model the evolution of continuously varying traits as a Brownian diffusion process acting on a phylogenetic tree. However, standard Brownian diffusion is quite restrictive and may not accurately characterize certain trait evolutionary processes. Here, we relax one of the major restrictions of standard Brownian diffusion by incorporating a nontrivial estimable mean into the process. We introduce a relaxed directional random walk (RDRW) model for the evolution of multivariate continuously varying traits along a phylogenetic tree. Notably, the RDRW model accommodates branch-specific variation of directional trends while preserving model identifiability. Furthermore, our development of a computationally efficient dynamic programming approach to compute the data likelihood enables scaling of our method to large data sets frequently encountered in phylogenetic comparative studies and viral evolution. We implement the RDRW model in a Bayesian inference framework to simultaneously reconstruct the evolutionary histories of molecular sequence data and associated multivariate continuous trait data, and provide tools to visualize evolutionary reconstructions. We demonstrate the performance of our model on synthetic data, and we illustrate its utility in two viral examples. First, we examine the spatiotemporal spread of HIV-1 in central Africa and show that the RDRW model uncovers a clearer, more detailed picture of the dynamics of viral dispersal than standard Brownian diffusion. Second, we study antigenic evolution in the context of HIV-1 resistance to three broadly neutralizing antibodies. Our analysis reveals evidence of a continuous drift at the HIV-1 population level towards enhanced resistance to neutralization by the VRC01 monoclonal antibody over the course of the epidemic. [Brownian Motion; Diffusion Processes; Phylodynamics; Phylogenetics; Phylogeography; Trait Evolution.].
(© The Author(s) 2016. Published by Oxford University Press, on behalf of the Society of Systematic Biologists. All rights reserved. For Permissions, please email: journals.permissions@oup.com.)