Treffer: The Sublanguage of Clinical Problem Lists: A Corpus Analysis.
Proc AMIA Symp. 2001;:662-6. (PMID: 11825268)
AMIA Jt Summits Transl Sci Proc. 2012;2012:30-7. (PMID: 22779045)
N Engl J Med. 1968 Mar 14;278(11):593-600. (PMID: 5637758)
BMC Med Inform Decis Mak. 2011 May 25;11:36. (PMID: 21612639)
J Am Med Inform Assoc. 1999 May-Jun;6(3):205-18. (PMID: 10332654)
Methods Inf Med. 1995 Mar;34(1-2):176-86. (PMID: 9082129)
AMIA Annu Symp Proc. 2008 Nov 06;:753-7. (PMID: 18999284)
J Biomed Inform. 2002 Aug;35(4):222-35. (PMID: 12755517)
Proc AMIA Symp. 2001;:17-21. (PMID: 11825149)
AMIA Annu Symp Proc. 2012;2012:568-76. (PMID: 23304329)
Nucleic Acids Res. 2004 Jan 1;32(Database issue):D267-70. (PMID: 14681409)
Nucleic Acids Res. 2011 Jul;39(Web Server issue):W541-5. (PMID: 21672956)
Yearb Med Inform. 2008;:67-79. (PMID: 18660879)
Health Inf Sci Syst. 2014 Feb 07;2:3. (PMID: 25825667)
J Am Med Inform Assoc. 2011 Sep-Oct;18(5):601-6. (PMID: 21508414)
J Am Med Inform Assoc. 1994 Mar-Apr;1(2):142-60. (PMID: 7719796)
AMIA Annu Symp Proc. 2003;:699-703. (PMID: 14728263)
J Biomed Inform. 2002 Aug;35(4):215-21. (PMID: 12755516)
J Am Med Inform Assoc. 2018 Mar 1;25(3):353-359. (PMID: 29202185)
J Am Med Inform Assoc. 2011 Mar-Apr;18(2):181-6. (PMID: 21233086)
Int J Med Inform. 2003 Sep;71(2-3):89-102. (PMID: 14519402)
J Am Med Inform Assoc. 2009 May-Jun;16(3):362-70. (PMID: 19261947)
Stud Health Technol Inform. 2007;129(Pt 1):679-83. (PMID: 17911803)
J Am Med Inform Assoc. 2008 Nov-Dec;15(6):744-51. (PMID: 18755993)
J Biomed Semantics. 2017 Sep 11;8(1):37. (PMID: 28893314)
Weitere Informationen
.Summary-level clinical text is an important part of the overall clinical record as it provides a condensed and efficient view into the issues pertinent to the patient, or their "problem list." These problem lists contain a wealth of information pertaining to the patient's history as well as current state and well-being. In this study, we explore the structure of these problem list entries both grammatically and semantically in an attempt to learn the specialized rules, or "sublanguage" that governs them. Our methods focus on a large-scale corpus analysis of problem list entries. Using Resource Description Framework (RDF), we incorporate inferencing and reasoning via domain-specific ontologies into our analysis to elicit common semantic patterns. We also explore how these methods can be applied dynamically to learn specific sublanguage features of interest for a particular concept or topic within the domain.