Treffer: The Development of a Practical Artificial Intelligence Tool for Diagnosing and Evaluating Autism Spectrum Disorder: Multicenter Study.

Title:
The Development of a Practical Artificial Intelligence Tool for Diagnosing and Evaluating Autism Spectrum Disorder: Multicenter Study.
Authors:
Chen T; School of Information Management, Wuhan University, Wuhan, China.; School of Information Technology, Shangqiu Normal University, Shangqiu, China., Chen Y; Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States., Yuan M; School of Information Management, Wuhan University, Wuhan, China., Gerstein M; Program in Neurodevelopment and Regeneration, Yale University, New Haven, CT, United States.; Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, United States.; Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, United States.; Department of Computer Science, Yale University, New Haven, CT, United States., Li T; Children Nutrition Research Center, Chongqing, China.; Children's Hospital of Chongqing Medical University, Chongqing, China.; Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China.; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China.; Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Chongqing, China., Liang H; Guangzhou Women and Children's Medical Center, Guangzhou, China.; Guangzhou Medical University, Guangzhou, China., Froehlich T; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States.; Division of Developmental and Behavioral Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States., Lu L; School of Information Management, Wuhan University, Wuhan, China.; Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States.
Source:
JMIR medical informatics [JMIR Med Inform] 2020 May 08; Vol. 8 (5), pp. e15767. Date of Electronic Publication: 2020 May 08.
Publication Type:
Journal Article
Language:
English
Journal Info:
Publisher: JMIR Publications Country of Publication: Canada NLM ID: 101645109 Publication Model: Electronic Cited Medium: Print ISSN: 2291-9694 (Print) Linking ISSN: 22919694 NLM ISO Abbreviation: JMIR Med Inform Subsets: PubMed not MEDLINE
Imprint Name(s):
Original Publication: Toronto : JMIR Publications, [2013]-
References:
Biol Psychiatry. 2011 May 1;69(9):832-8. (PMID: 21310395)
Autism Res. 2012 Oct;5(5):289-313. (PMID: 22786754)
Pediatrics. 2012 Feb;129(2):e305-16. (PMID: 22271695)
Neuroimage. 2017 Feb 15;147:736-745. (PMID: 27865923)
Hum Brain Mapp. 1998;6(5-6):348-57. (PMID: 9788071)
Neuroimage. 2012 Sep;62(3):1445-54. (PMID: 22659481)
Neuroimage. 2012 Apr 2;60(2):1106-16. (PMID: 22270352)
Trends Neurosci. 2008 Mar;31(3):137-45. (PMID: 18258309)
Neurosci Biobehav Rev. 2009 Sep;33(8):1198-203. (PMID: 19538989)
Mach Learn Med Imaging. 2017 Sep;10541:362-370. (PMID: 29104967)
Neuroimage. 2010 Jul 1;51(3):956-69. (PMID: 20211269)
Hum Brain Mapp. 2017 Jun;38(6):3081-3097. (PMID: 28345269)
Neuroimage Clin. 2013 Oct 11;3:416-28. (PMID: 24363991)
Hum Brain Mapp. 2011 Nov;32(11):1905-15. (PMID: 21246668)
Dev Neuropsychol. 2007;31(2):217-38. (PMID: 17488217)
Neuroimage. 2008 Nov 15;43(3):458-69. (PMID: 18691658)
Autism. 2019 May;23(4):1065-1072. (PMID: 30244604)
Brain. 2012 May;135(Pt 5):1508-21. (PMID: 22544901)
Neuroradiology. 2009 Feb;51(2):73-83. (PMID: 18846369)
Int J Dev Neurosci. 2018 Dec;71:34-45. (PMID: 30110650)
Nat Rev Neurosci. 2008 Apr;9(4):267-77. (PMID: 18354399)
Neuroimage. 2000 Jun;11(6 Pt 1):805-21. (PMID: 10860804)
Lancet. 2003 Jan 25;361(9354):281-8. (PMID: 12559861)
Neuroimage. 2012 Jan 16;59(2):1013-22. (PMID: 21896334)
Neuroimage. 2010 Jan 1;49(1):44-56. (PMID: 19683584)
Front Hum Neurosci. 2013 Sep 25;7:599. (PMID: 24093016)
Front Syst Neurosci. 2012 Aug 16;6:59. (PMID: 22912605)
Nat Neurosci. 2013 Jul;16(7):832-7. (PMID: 23799476)
Neuroimage Clin. 2013 Nov 28;4:164-73. (PMID: 24371799)
Biomed Res Int. 2017;2017:3956363. (PMID: 28251155)
Sci Data. 2017 Mar 14;4:170010. (PMID: 28291247)
Hum Brain Mapp. 2019 Feb 15;40(3):833-854. (PMID: 30357998)
Neuroimage. 2007 Feb 1;34(3):924-38. (PMID: 17161622)
Neuroimage. 2011 May 15;56(2):766-81. (PMID: 20542124)
J Dev Behav Pediatr. 2008 Jun;29(3):152-60. (PMID: 18349708)
PLoS One. 2016 Dec 28;11(12):e0166934. (PMID: 28030565)
Neuroimage. 2010 Feb 1;49(3):2318-27. (PMID: 19853047)
J Neural Transm (Vienna). 2012 Mar;119(3):395-404. (PMID: 21904897)
Nature. 2017 Feb 15;542(7641):348-351. (PMID: 28202961)
Neuron. 2001 Dec 20;32(6):969-79. (PMID: 11754830)
Pediatr Res. 2011 May;69(5 Pt 2):63R-8R. (PMID: 21289538)
J Autism Dev Disord. 2015 Dec;45(12):4135-9. (PMID: 26183723)
Front Neurosci. 2017 Aug 21;11:460. (PMID: 28871217)
Neuroimage. 2010 Apr 1;50(2):589-99. (PMID: 20026220)
Proc Natl Acad Sci U S A. 2016 Jul 12;113(28):7900-5. (PMID: 27357684)
Neuroimage. 2011 May 15;56(2):616-26. (PMID: 20541019)
Conf Proc IEEE Eng Med Biol Soc. 2015 Aug;2015:4270-3. (PMID: 26737238)
Neuroimage. 2005 Jan 15;24(2):455-61. (PMID: 15627587)
Neuroimage. 2008 Feb 1;39(3):1186-97. (PMID: 18054253)
Int J Dev Neurosci. 2018 Dec;71:68-82. (PMID: 30172895)
J Med Syst. 2012 Apr;36(2):995-1000. (PMID: 21584770)
Neuroimage Clin. 2018 May 09;19:476-486. (PMID: 29984156)
Neuroimage. 2004 Jan;21(1):46-57. (PMID: 14741641)
J Neurosci Methods. 2014 Jan 15;221:22-31. (PMID: 24041480)
Clin Neurosci Res. 2006 Oct;6(3):145-160. (PMID: 18176635)
BMC Psychiatry. 2006 Dec 13;6:56. (PMID: 17166273)
Neuroimage Clin. 2017 Aug 30;17:16-23. (PMID: 29034163)
Pediatr Clin North Am. 2017 Feb;64(1):127-138. (PMID: 27894440)
Med Image Comput Comput Assist Interv. 2014;17(Pt 3):177-84. (PMID: 25320797)
Neuroimage. 2011 May 15;56(2):387-99. (PMID: 21172442)
Neuroimage. 2011 Jan 15;54(2):1159-67. (PMID: 20817107)
Contributed Indexing:
Keywords: autism spectrum disorder; brain; classification; cluster analysis; histogram of oriented gradients; machine learning; magnetic resonance imaging; neuroimaging
Entry Date(s):
Date Created: 20200212 Latest Revision: 20200928
Update Code:
20250114
PubMed Central ID:
PMC7244998
DOI:
10.2196/15767
PMID:
32041690
Database:
MEDLINE

Weitere Informationen

Background: Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder with an unknown etiology. Early diagnosis and intervention are key to improving outcomes for patients with ASD. Structural magnetic resonance imaging (sMRI) has been widely used in clinics to facilitate the diagnosis of brain diseases such as brain tumors. However, sMRI is less frequently used to investigate neurological and psychiatric disorders, such as ASD, owing to the subtle, if any, anatomical changes of the brain.
Objective: This study aimed to investigate the possibility of identifying structural patterns in the brain of patients with ASD as potential biomarkers in the diagnosis and evaluation of ASD in clinics.
Methods: We developed a novel 2-level histogram-based morphometry (HBM) classification framework in which an algorithm based on a 3D version of the histogram of oriented gradients (HOG) was used to extract features from sMRI data. We applied this framework to distinguish patients with ASD from healthy controls using 4 datasets from the second edition of the Autism Brain Imaging Data Exchange, including the ETH Zürich (ETH), NYU Langone Medical Center: Sample 1, Oregon Health and Science University, and Stanford University (SU) sites. We used a stratified 10-fold cross-validation method to evaluate the model performance, and we applied the Naive Bayes approach to identify the predictive ASD-related brain regions based on classification contributions of each HOG feature.
Results: On the basis of the 3D HOG feature extraction method, our proposed HBM framework achieved an area under the curve (AUC) of >0.75 in each dataset, with the highest AUC of 0.849 in the ETH site. We compared the 3D HOG algorithm with the original 2D HOG algorithm, which showed an accuracy improvement of >4% in each dataset, with the highest improvement of 14% (6/42) in the SU site. A comparison of the 3D HOG algorithm with the scale-invariant feature transform algorithm showed an AUC improvement of >18% in each dataset. Furthermore, we identified ASD-related brain regions based on the sMRI images. Some of these regions (eg, frontal gyrus, temporal gyrus, cingulate gyrus, postcentral gyrus, precuneus, caudate, and hippocampus) are known to be implicated in ASD in prior neuroimaging literature. We also identified less well-known regions that may play unrecognized roles in ASD and be worth further investigation.
Conclusions: Our research suggested that it is possible to identify neuroimaging biomarkers that can distinguish patients with ASD from healthy controls based on the more cost-effective sMRI images of the brain. We also demonstrated the potential of applying data-driven artificial intelligence technology in the clinical setting of neurological and psychiatric disorders, which usually harbor subtle anatomical changes in the brain that are often invisible to the human eye.
(©Tao Chen, Ye Chen, Mengxue Yuan, Mark Gerstein, Tingyu Li, Huiying Liang, Tanya Froehlich, Long Lu. Originally published in JMIR Medical Informatics (http://medinform.jmir.org), 08.05.2020.)