Treffer: Polar labeling: silver standard algorithm for training disease classifiers.
J Am Med Inform Assoc. 2017 Jan;24(1):162-171. (PMID: 27497800)
J Am Med Inform Assoc. 2017 Apr 1;24(e1):e143-e149. (PMID: 27632993)
J Am Med Inform Assoc. 2014 Mar-Apr;21(2):221-30. (PMID: 24201027)
J Am Med Inform Assoc. 2013 Jan 1;20(1):117-21. (PMID: 22955496)
J Am Med Inform Assoc. 2013 Dec;20(e2):e226-31. (PMID: 23956018)
Mol Oncol. 2015 May;9(5):1018-24. (PMID: 25248998)
J Biomed Inform. 2014 Dec;52:199-211. (PMID: 25038555)
J Diabetes Sci Technol. 2017 Jul;11(4):791-799. (PMID: 27932531)
J Am Med Inform Assoc. 2018 Jan 1;25(1):54-60. (PMID: 29126253)
AMIA Annu Symp Proc. 2011;2011:189-96. (PMID: 22195070)
J Am Med Inform Assoc. 2013 Dec;20(e2):e253-9. (PMID: 23851443)
AMIA Annu Symp Proc. 2008 Nov 06;:1170. (PMID: 18999043)
Evid Based Ment Health. 2017 Aug;20(3):83-87. (PMID: 28739578)
J Am Med Inform Assoc. 2017 Sep 1;24(5):996-1001. (PMID: 28340241)
J Am Med Inform Assoc. 2015 Nov;22(6):1251-60. (PMID: 26224336)
AMIA Annu Symp Proc. 2006;:1044. (PMID: 17238663)
Artif Intell Med. 2007 Nov;41(3):251-62. (PMID: 17707617)
J Am Med Inform Assoc. 2016 Nov;23(6):1166-1173. (PMID: 27174893)
Weitere Informationen
Motivation: Expert-labeled data are essential to train phenotyping algorithms for cohort identification. However expert labeling is time and labor intensive, and the costs remain prohibitive for scaling phenotyping to wider use-cases.
Results: We present an approach referred to as polar labeling (PL), to create silver standard for training machine learning (ML) for disease classification. We test the hypothesis that ML models trained on the silver standard created by applying PL on unlabeled patient records, are comparable in performance to the ML models trained on gold standard, created by clinical experts through manual review of patient records. We perform experimental validation using health records of 38 023 patients spanning six diseases. Our results demonstrate the superior performance of the proposed approach.
Availability and Implementation: We provide a Python implementation of the algorithm and the Python code developed for this study on Github.
Supplementary Information: Supplementary data are available at Bioinformatics online.
(© The Author(s) 2020. Published by Oxford University Press.)