Treffer: Efficient exact inference for dynamical systems with noisy measurements using sequential approximate Bayesian computation.

Title:
Efficient exact inference for dynamical systems with noisy measurements using sequential approximate Bayesian computation.
Authors:
Schälte Y; Helmholtz Zentrum München, Institute of Computational Biology, Neuherberg 85764, Germany.; Department of Mathematics, Chair of Mathematical Modeling of Biological Systems, Technical University Munich, Garching 85748, Germany., Hasenauer J; Helmholtz Zentrum München, Institute of Computational Biology, Neuherberg 85764, Germany.; Department of Mathematics, Chair of Mathematical Modeling of Biological Systems, Technical University Munich, Garching 85748, Germany.; Research Unit Biomathematics, University of Bonn, Bonn 53113, Germany.
Source:
Bioinformatics (Oxford, England) [Bioinformatics] 2020 Jul 01; Vol. 36 (Suppl_1), pp. i551-i559.
Publication Type:
Journal Article; Research Support, Non-U.S. Gov't
Language:
English
Journal Info:
Publisher: Oxford University Press Country of Publication: England NLM ID: 9808944 Publication Model: Print Cited Medium: Internet ISSN: 1367-4811 (Electronic) Linking ISSN: 13674803 NLM ISO Abbreviation: Bioinformatics Subsets: MEDLINE
Imprint Name(s):
Original Publication: Oxford : Oxford University Press, c1998-
References:
J R Soc Interface. 2009 Feb 6;6(31):187-202. (PMID: 19205079)
Nat Commun. 2019 May 13;10(1):2144. (PMID: 31086185)
Ecol Appl. 2018 Mar;28(2):267-274. (PMID: 29178336)
Nature. 2010 Aug 26;466(7310):1102-4. (PMID: 20703226)
Bioinformatics. 2019 Jan 15;35(2):284-292. (PMID: 30010712)
Genetics. 2002 Dec;162(4):2025-35. (PMID: 12524368)
Bioinformatics. 2009 Aug 1;25(15):1923-9. (PMID: 19505944)
J Stat Softw. 2017;76:. (PMID: 36568334)
Bioinformatics. 2020 May 1;36(10):3286-3287. (PMID: 32022854)
Proc Natl Acad Sci U S A. 2007 Feb 6;104(6):1760-5. (PMID: 17264216)
J Proteome Res. 2014 Dec 5;13(12):5685-94. (PMID: 25333863)
BMC Syst Biol. 2016 Aug 22;10(1):81. (PMID: 27549182)
Cell Syst. 2017 Feb 22;4(2):194-206.e9. (PMID: 28089542)
Phys Chem Chem Phys. 2005 Dec 7;7(23):3910-6. (PMID: 19810318)
Bioinformatics. 2010 Jan 1;26(1):104-10. (PMID: 19880371)
Bioinformatics. 2018 Oct 15;34(20):3591-3593. (PMID: 29762723)
J Chem Phys. 2004 Mar 1;120(9):4119-28. (PMID: 15268578)
J R Soc Interface. 2018 Dec 21;15(149):20180600. (PMID: 30958238)
BMC Syst Biol. 2016 Oct 21;10(1):100. (PMID: 27769238)
Bioinformatics. 2017 Mar 1;33(5):718-725. (PMID: 28062444)
Stat Appl Genet Mol Biol. 2013 May 06;12(2):129-41. (PMID: 23652634)
BMC Syst Biol. 2008 May 28;2:47. (PMID: 18507829)
PLoS One. 2013 Sep 30;8(9):e74335. (PMID: 24098642)
Biophys J. 2015 May 5;108(9):2103-13. (PMID: 25954869)
Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Apr;83(4 Pt 1):041908. (PMID: 21599202)
J Pers Assess. 2009 Mar;91(2):121-36. (PMID: 19205933)
J R Soc Interface. 2017 Sep;14(134):. (PMID: 28931636)
Entry Date(s):
Date Created: 20200714 Date Completed: 20210308 Latest Revision: 20240731
Update Code:
20250114
PubMed Central ID:
PMC7355286
DOI:
10.1093/bioinformatics/btaa397
PMID:
32657404
Database:
MEDLINE

Weitere Informationen

Motivation: Approximate Bayesian computation (ABC) is an increasingly popular method for likelihood-free parameter inference in systems biology and other fields of research, as it allows analyzing complex stochastic models. However, the introduced approximation error is often not clear. It has been shown that ABC actually gives exact inference under the implicit assumption of a measurement noise model. Noise being common in biological systems, it is intriguing to exploit this insight. But this is difficult in practice, as ABC is in general highly computationally demanding. Thus, the question we want to answer here is how to efficiently account for measurement noise in ABC.
Results: We illustrate exemplarily how ABC yields erroneous parameter estimates when neglecting measurement noise. Then, we discuss practical ways of correctly including the measurement noise in the analysis. We present an efficient adaptive sequential importance sampling-based algorithm applicable to various model types and noise models. We test and compare it on several models, including ordinary and stochastic differential equations, Markov jump processes and stochastically interacting agents, and noise models including normal, Laplace and Poisson noise. We conclude that the proposed algorithm could improve the accuracy of parameter estimates for a broad spectrum of applications.
Availability and Implementation: The developed algorithms are made publicly available as part of the open-source python toolbox pyABC (https://github.com/icb-dcm/pyabc).
Supplementary Information: Supplementary data are available at Bioinformatics online.
(© The Author(s) 2020. Published by Oxford University Press.)