Serviceeinschränkungen vom 12.-22.02.2026 - weitere Infos auf der UB-Homepage

Treffer: Machine learning-based reclassification of germline variants of unknown significance: The RENOVO algorithm.

Title:
Machine learning-based reclassification of germline variants of unknown significance: The RENOVO algorithm.
Authors:
Favalli V; Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy., Tini G; Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy., Bonetti E; Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy., Vozza G; Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy., Guida A; Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy; Biomedical Translational Imaging Centre, Nova Scotia Health Authority and IWK Health Centre, Halifax, NS B3K 6R8, Canada., Gandini S; Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy., Pelicci PG; Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy., Mazzarella L; Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy. Electronic address: luca.mazzarella@ieo.it.
Source:
American journal of human genetics [Am J Hum Genet] 2021 Apr 01; Vol. 108 (4), pp. 682-695. Date of Electronic Publication: 2021 Mar 23.
Publication Type:
Journal Article; Research Support, Non-U.S. Gov't
Language:
English
Journal Info:
Publisher: Cell Press Country of Publication: United States NLM ID: 0370475 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1537-6605 (Electronic) Linking ISSN: 00029297 NLM ISO Abbreviation: Am J Hum Genet Subsets: MEDLINE
Imprint Name(s):
Publication: 2008- : [Cambridge, MA] : Cell Press
Original Publication: Baltimore, American Society of Human Genetics.
References:
JCO Precis Oncol. 2020 Aug 27;4:. (PMID: 32923914)
Lancet Digit Health. 2020 Apr;2(4):e179-e191. (PMID: 33328078)
Hum Mutat. 2018 Nov;39(11):1623-1630. (PMID: 30311387)
Nature. 2014 Sep 4;513(7516):120-3. (PMID: 25141179)
Nucleic Acids Res. 2010 Sep;38(16):e164. (PMID: 20601685)
Am J Hum Genet. 2017 Feb 2;100(2):267-280. (PMID: 28132688)
Bioinformatics. 2005 Oct 15;21(20):3940-1. (PMID: 16096348)
Hum Mutat. 2018 Nov;39(11):1713-1720. (PMID: 30311373)
Genet Med. 2017 Feb;19(2):249-255. (PMID: 27854360)
Nat Genet. 2016 Feb;48(2):214-20. (PMID: 26727659)
Genet Med. 2019 Jul;21(7):1467-1468. (PMID: 31019278)
N Engl J Med. 2015 Jun 4;372(23):2235-42. (PMID: 26014595)
Genet Med. 2018 Sep;20(9):1054-1060. (PMID: 29300386)
Europace. 2011 Aug;13(8):1077-109. (PMID: 21810866)
Am J Hum Genet. 2016 Jun 2;98(6):1077-1081. (PMID: 27236918)
Genet Med. 2015 May;17(5):405-24. (PMID: 25741868)
Am J Hum Genet. 2020 Jul 2;107(1):111-123. (PMID: 32533946)
Hum Mutat. 2020 Jun;41(6):1079-1090. (PMID: 32176384)
Hum Mol Genet. 2015 Apr 15;24(8):2125-37. (PMID: 25552646)
Nat Methods. 2015 Oct;12(10):931-4. (PMID: 26301843)
Nat Genet. 2014 Mar;46(3):310-5. (PMID: 24487276)
Am J Hum Genet. 2016 Jun 2;98(6):1067-1076. (PMID: 27181684)
Nature. 2018 Oct;562(7726):217-222. (PMID: 30209399)
Genet Med. 2014 Aug;16(8):601-8. (PMID: 24503780)
Hum Mutat. 2019 Sep;40(9):1557-1578. (PMID: 31131967)
Hum Mutat. 2016 Mar;37(3):235-41. (PMID: 26555599)
Nucleic Acids Res. 2014 Jan;42(Database issue):D980-5. (PMID: 24234437)
Biometrics. 1988 Sep;44(3):837-45. (PMID: 3203132)
Circulation. 2018 Dec 4;138(23):2666-2681. (PMID: 29914921)
J Exp Clin Cancer Res. 2020 Mar 4;39(1):46. (PMID: 32127026)
Bioinformatics. 2019 Jun 1;35(11):1978-1980. (PMID: 30376034)
Nucleic Acids Res. 2018 Jan 4;46(D1):D1062-D1067. (PMID: 29165669)
Contributed Indexing:
Keywords: ClinVar; VUS; machine learning; reclassification; variant interpretation
Entry Date(s):
Date Created: 20210324 Date Completed: 20210507 Latest Revision: 20211002
Update Code:
20250114
PubMed Central ID:
PMC8059374
DOI:
10.1016/j.ajhg.2021.03.010
PMID:
33761318
Database:
MEDLINE

Weitere Informationen

The increasing scope of genetic testing allowed by next-generation sequencing (NGS) dramatically increased the number of genetic variants to be interpreted as pathogenic or benign for adequate patient management. Still, the interpretation process often fails to deliver a clear classification, resulting in either variants of unknown significance (VUSs) or variants with conflicting interpretation of pathogenicity (CIP); these represent a major clinical problem because they do not provide useful information for decision-making, causing a large fraction of genetically determined disease to remain undertreated. We developed a machine learning (random forest)-based tool, RENOVO, that classifies variants as pathogenic or benign on the basis of publicly available information and provides a pathogenicity likelihood score (PLS). Using the same feature classes recommended by guidelines, we trained RENOVO on established pathogenic/benign variants in ClinVar (training set accuracy = 99%) and tested its performance on variants whose interpretation has changed over time (test set accuracy = 95%). We further validated the algorithm on additional datasets including unreported variants validated either through expert consensus (ENIGMA) or laboratory-based functional techniques (on BRCA1/2 and SCN5A). On all datasets, RENOVO outperformed existing automated interpretation tools. On the basis of the above validation metrics, we assigned a defined PLS to all existing ClinVar VUSs, proposing a reclassification for 67% with >90% estimated precision. RENOVO provides a validated tool to reduce the fraction of uninterpreted or misinterpreted variants, tackling an area of unmet need in modern clinical genetics.
(Copyright © 2021 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.)