Treffer: Medical image-based detection of COVID-19 using Deep Convolution Neural Networks.
N Engl J Med. 2020 Mar 26;382(13):1199-1207. (PMID: 31995857)
Radiology. 2020 Apr;295(1):202-207. (PMID: 32017661)
Cureus. 2020 Jul 28;12(7):e9448. (PMID: 32864270)
Med Biol Eng Comput. 2019 Jul;57(7):1451-1463. (PMID: 30900057)
Appl Sci (Basel). 2018 Oct;8(10):. (PMID: 32457819)
IEEE Trans Med Imaging. 2020 Aug;39(8):2688-2700. (PMID: 32396075)
Sustain Cities Soc. 2021 Jan;64:102582. (PMID: 33178557)
Sci Rep. 2020 Nov 11;10(1):19549. (PMID: 33177550)
Cell. 2018 Feb 22;172(5):1122-1131.e9. (PMID: 29474911)
AJR Am J Roentgenol. 2020 Jul;215(1):87-93. (PMID: 32174129)
IEEE Trans Netw Sci Eng. 2020 Sep 24;9(1):308-318. (PMID: 35582325)
Diagnostics (Basel). 2020 Mar 18;10(3):. (PMID: 32197339)
Front Med (Lausanne). 2020 Jul 14;7:427. (PMID: 32760732)
Radiology. 2011 Dec;261(3):719-32. (PMID: 22095995)
J Digit Imaging. 2017 Feb;30(1):95-101. (PMID: 27730417)
Euro Surveill. 2020 Jan;25(3):. (PMID: 31992387)
Inform Med Unlocked. 2020;20:100391. (PMID: 32835077)
Radiology. 2017 Aug;284(2):574-582. (PMID: 28436741)
JAMA. 2020 Mar 17;323(11):1061-1069. (PMID: 32031570)
Pattern Recognit. 2021 May;113:107700. (PMID: 33100403)
Inf Fusion. 2021 Aug;72:80-88. (PMID: 33649704)
Phys Eng Sci Med. 2020 Sep;43(3):915-925. (PMID: 32588200)
Lancet. 2020 Feb 15;395(10223):497-506. (PMID: 31986264)
IEEE Internet Things J. 2021 Jan 12;8(21):15847-15854. (PMID: 35782185)
Int J Tuberc Lung Dis. 2019 Jul 1;23(7):805-810. (PMID: 31439111)
JAMA. 2020 May 12;323(18):1843-1844. (PMID: 32159775)
IEEE Internet Things J. 2020 Aug 03;8(12):9603-9610. (PMID: 36811011)
Weitere Informationen
The demand for automatic detection of Novel Coronavirus or COVID-19 is increasing across the globe. The exponential rise in cases burdens healthcare facilities, and a vast amount of multimedia healthcare data is being explored to find a solution. This study presents a practical solution to detect COVID-19 from chest X-rays while distinguishing those from normal and impacted by Viral Pneumonia via Deep Convolution Neural Networks (CNN). In this study, three pre-trained CNN models (EfficientNetB0, VGG16, and InceptionV3) are evaluated through transfer learning. The rationale for selecting these specific models is their balance of accuracy and efficiency with fewer parameters suitable for mobile applications. The dataset used for the study is publicly available and compiled from different sources. This study uses deep learning techniques and performance metrics (accuracy, recall, specificity, precision, and F1 scores). The results show that the proposed approach produced a high-quality model, with an overall accuracy of 92.93%, COVID-19, a sensitivity of 94.79%. The work indicates a definite possibility to implement computer vision design to enable effective detection and screening measures.
(© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021.)
Conflict of interestThe authors declare that they have no conflict of interest.