Treffer: A mechanistic and data-driven reconstruction of the time-varying reproduction number: Application to the COVID-19 epidemic.
J R Soc Interface. 2021 Jan;18(174):20200756. (PMID: 33402022)
Proc Natl Acad Sci U S A. 2020 Jul 28;117(30):17513-17515. (PMID: 32632012)
Science. 2020 Aug 28;369(6507):1106-1109. (PMID: 32694200)
Nat Commun. 2021 May 21;12(1):3025. (PMID: 34021152)
Science. 2020 May 1;368(6490):489-493. (PMID: 32179701)
Science. 2020 Jul 10;369(6500):. (PMID: 32414780)
Int J Infect Dis. 2021 Mar;104:693-695. (PMID: 33540130)
Proc Biol Sci. 2015 May 7;282(1806):20150347. (PMID: 25833863)
Am J Epidemiol. 2013 Nov 1;178(9):1505-12. (PMID: 24043437)
Math Biosci. 1997 Mar;140(2):131-54. (PMID: 9046772)
Euro Surveill. 2020 Apr;25(17):. (PMID: 32372755)
Proc Biol Sci. 2007 Feb 22;274(1609):599-604. (PMID: 17476782)
N Engl J Med. 2020 Mar 26;382(13):1199-1207. (PMID: 31995857)
BMC Med. 2020 Jul 30;18(1):240. (PMID: 32727547)
Biostatistics. 2013 Jul;14(3):541-55. (PMID: 23292757)
PLoS Comput Biol. 2018 Aug 15;14(8):e1006211. (PMID: 30110322)
Ann Intern Med. 2020 Sep 1;173(5):362-367. (PMID: 32491919)
HRB Open Res. 2021 Feb 18;4:19. (PMID: 35280848)
Clin Infect Dis. 2021 Jul 1;73(1):e215-e223. (PMID: 33079987)
Biometrics. 2014 Dec;70(4):993-1002. (PMID: 24930473)
J R Soc Interface. 2010 Jun 6;7(47):873-85. (PMID: 19892718)
PLoS One. 2021 Jan 13;16(1):e0244474. (PMID: 33439880)
Nature. 2021 Feb;590(7844):134-139. (PMID: 33348340)
Nature. 2020 Aug;584(7820):257-261. (PMID: 32512579)
Am J Epidemiol. 2021 Sep 1;190(9):1908-1917. (PMID: 33831148)
Nature. 2020 Aug;584(7821):420-424. (PMID: 32674112)
PLoS Comput Biol. 2020 Dec 10;16(12):e1008409. (PMID: 33301457)
PLoS One. 2020 Jul 23;15(7):e0236620. (PMID: 32702051)
Proc Natl Acad Sci U S A. 2021 Mar 2;118(9):. (PMID: 33571106)
Swiss Med Wkly. 2020 May 30;150:w20295. (PMID: 32472939)
Weitere Informationen
The effective reproduction number Reff is a critical epidemiological parameter that characterizes the transmissibility of a pathogen. However, this parameter is difficult to estimate in the presence of silent transmission and/or significant temporal variation in case reporting. This variation can occur due to the lack of timely or appropriate testing, public health interventions and/or changes in human behavior during an epidemic. This is exactly the situation we are confronted with during this COVID-19 pandemic. In this work, we propose to estimate Reff for the SARS-CoV-2 (the etiological agent of the COVID-19), based on a model of its propagation considering a time-varying transmission rate. This rate is modeled by a Brownian diffusion process embedded in a stochastic model. The model is then fitted by Bayesian inference (particle Markov Chain Monte Carlo method) using multiple well-documented hospital datasets from several regions in France and in Ireland. This mechanistic modeling framework enables us to reconstruct the temporal evolution of the transmission rate of the COVID-19 based only on the available data. Except for the specific model structure, it is non-specifically assumed that the transmission rate follows a basic stochastic process constrained by the observations. This approach allows us to follow both the course of the COVID-19 epidemic and the temporal evolution of its Reff(t). Besides, it allows to assess and to interpret the evolution of transmission with respect to the mitigation strategies implemented to control the epidemic waves in France and in Ireland. We can thus estimate a reduction of more than 80% for the first wave in all the studied regions but a smaller reduction for the second wave when the epidemic was less active, around 45% in France but just 20% in Ireland. For the third wave in Ireland the reduction was again significant (>70%).
The authors have declared that no competing interests exist.