Treffer: SMILE: mutual information learning for integration of single-cell omics data.

Title:
SMILE: mutual information learning for integration of single-cell omics data.
Authors:
Xu Y; UT-ORNL Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN 37996, USA., Das P; UT-ORNL Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN 37996, USA., McCord RP; Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA.
Source:
Bioinformatics (Oxford, England) [Bioinformatics] 2022 Jan 03; Vol. 38 (2), pp. 476-486.
Publication Type:
Journal Article; Research Support, N.I.H., Extramural
Language:
English
Journal Info:
Publisher: Oxford University Press Country of Publication: England NLM ID: 9808944 Publication Model: Print Cited Medium: Internet ISSN: 1367-4811 (Electronic) Linking ISSN: 13674803 NLM ISO Abbreviation: Bioinformatics Subsets: MEDLINE
Imprint Name(s):
Original Publication: Oxford : Oxford University Press, c1998-
References:
Nat Rev Genet. 2021 Oct;22(10):627-644. (PMID: 34145435)
Nat Commun. 2019 Jan 23;10(1):390. (PMID: 30674886)
Cell Syst. 2016 Oct 26;3(4):346-360.e4. (PMID: 27667365)
Bioinformatics. 2020 Jan 15;36(2):533-538. (PMID: 31359028)
Nat Methods. 2019 Dec;16(12):1289-1296. (PMID: 31740819)
Nat Methods. 2018 Dec;15(12):1053-1058. (PMID: 30504886)
Nat Biotechnol. 2018 Jun;36(5):411-420. (PMID: 29608179)
Genome Biol. 2020 Jan 16;21(1):12. (PMID: 31948481)
Genome Biol. 2019 Oct 18;20(1):211. (PMID: 31627739)
Nature. 2020 Apr;580(7801):142-146. (PMID: 32238933)
BMC Bioinformatics. 2021 May 27;22(1):280. (PMID: 34044773)
Nat Commun. 2021 Jan 4;12(1):31. (PMID: 33397893)
Science. 2015 Mar 6;347(6226):1138-42. (PMID: 25700174)
Genome Res. 2021 Oct;31(10):1781-1793. (PMID: 33627475)
Cell. 2021 Feb 4;184(3):741-758.e17. (PMID: 33484631)
Nature. 2020 May;581(7808):303-309. (PMID: 32214235)
Proc Natl Acad Sci U S A. 2021 Apr 13;118(15):. (PMID: 33827925)
Genome Res. 2017 Feb;27(2):208-222. (PMID: 27864352)
Nat Biotechnol. 2021 Oct;39(10):1202-1215. (PMID: 33941931)
Cell. 2020 Nov 12;183(4):1103-1116.e20. (PMID: 33098772)
Nat Methods. 2020 Nov;17(11):1111-1117. (PMID: 33046897)
Genome Biol. 2018 Feb 6;19(1):15. (PMID: 29409532)
Nat Methods. 2019 Oct;16(10):991-993. (PMID: 31384045)
Cell. 2018 Aug 23;174(5):1309-1324.e18. (PMID: 30078704)
Nat Methods. 2019 Oct;16(10):999-1006. (PMID: 31501549)
Nat Protoc. 2020 Nov;15(11):3632-3662. (PMID: 33046898)
Bioinformatics. 2020 Jul 1;36(Suppl_1):i48-i56. (PMID: 32657382)
BMC Bioinformatics. 2014 May 29;15:162. (PMID: 24884486)
Nat Biotechnol. 2019 Dec;37(12):1458-1465. (PMID: 31792411)
Nat Rev Genet. 2019 May;20(5):257-272. (PMID: 30696980)
Genome Biol. 2021 Dec 20;22(1):346. (PMID: 34930412)
Circulation. 2020 Aug 4;142(5):466-482. (PMID: 32403949)
Nature. 2020 Dec;588(7838):466-472. (PMID: 32971526)
Proc Natl Acad Sci U S A. 2019 Jul 9;116(28):14011-14018. (PMID: 31235599)
Science. 2018 Sep 28;361(6409):1380-1385. (PMID: 30166440)
Nat Methods. 2021 Mar;18(3):283-292. (PMID: 33589836)
Cell Syst. 2016 Oct 26;3(4):385-394.e3. (PMID: 27693023)
Brief Bioinform. 2021 Jan 18;22(1):20-29. (PMID: 32363378)
Cell. 2019 Jun 13;177(7):1888-1902.e21. (PMID: 31178118)
Genome Biol. 2020 Feb 7;21(1):31. (PMID: 32033589)
Nat Biotechnol. 2019 Dec;37(12):1452-1457. (PMID: 31611697)
Cell Metab. 2016 Oct 11;24(4):593-607. (PMID: 27667667)
Nat Commun. 2017 Jan 16;8:14049. (PMID: 28091601)
Cell Stem Cell. 2016 Aug 4;19(2):266-277. (PMID: 27345837)
Nat Commun. 2021 Apr 15;12(1):2277. (PMID: 33859189)
Cell Syst. 2020 Jul 22;11(1):95-101.e5. (PMID: 32592658)
Grant Information:
R35 GM133557 United States GM NIGMS NIH HHS
Entry Date(s):
Date Created: 20211008 Date Completed: 20230202 Latest Revision: 20230401
Update Code:
20250114
PubMed Central ID:
PMC10060712
DOI:
10.1093/bioinformatics/btab706
PMID:
34623402
Database:
MEDLINE

Weitere Informationen

Motivation: Deep learning approaches have empowered single-cell omics data analysis in many ways and generated new insights from complex cellular systems. As there is an increasing need for single-cell omics data to be integrated across sources, types and features of data, the challenges of integrating single-cell omics data are rising. Here, we present an unsupervised deep learning algorithm that learns discriminative representations for single-cell data via maximizing mutual information, SMILE (Single-cell Mutual Information Learning).
Results: Using a unique cell-pairing design, SMILE successfully integrates multisource single-cell transcriptome data, removing batch effects and projecting similar cell types, even from different tissues, into the shared space. SMILE can also integrate data from two or more modalities, such as joint-profiling technologies using single-cell ATAC-seq, RNA-seq, DNA methylation, Hi-C and ChIP data. When paired cells are known, SMILE can integrate data with unmatched feature, such as genes for RNA-seq and genome-wide peaks for ATAC-seq. Integrated representations learned from joint-profiling technologies can then be used as a framework for comparing independent single source data.
Availability and Implementation: The source code of SMILE including analyses of key results in the study can be found at: https://github.com/rpmccordlab/SMILE, implemented in Python.
Supplementary Information: Supplementary data are available at Bioinformatics online.
(© The Author(s) 2021. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.)