Treffer: pyKVFinder: an efficient and integrable Python package for biomolecular cavity detection and characterization in data science.
J Chem Inf Model. 2019 Feb 25;59(2):786-796. (PMID: 30629446)
J Chem Theory Comput. 2017 Sep 12;13(9):4584-4592. (PMID: 28800393)
Nature. 2021 Aug;596(7873):590-596. (PMID: 34293799)
J Mol Recognit. 2010 Mar-Apr;23(2):209-19. (PMID: 19746440)
BMC Bioinformatics. 2009 Jun 02;10:168. (PMID: 19486540)
Bioinformatics. 2014 Oct 15;30(20):2981-2. (PMID: 24996895)
Bioinformatics. 2011 Feb 1;27(3):351-8. (PMID: 21134896)
Nat Commun. 2021 May 24;12(1):3038. (PMID: 34031424)
J Mol Graph Model. 1997 Dec;15(6):359-63, 389. (PMID: 9704298)
Nature. 2005 Jan 27;433(7024):377-81. (PMID: 15674282)
Proteins. 2006 Aug 15;64(3):559-74. (PMID: 16736488)
Bioinformatics. 2018 Apr 1;34(7):1241-1242. (PMID: 29236954)
mBio. 2016 Dec 13;7(6):. (PMID: 27965448)
Nature. 2020 Sep;585(7825):357-362. (PMID: 32939066)
J Mol Biol. 1982 May 5;157(1):105-32. (PMID: 7108955)
Curr Opin Struct Biol. 2018 Oct;52:95-102. (PMID: 30267935)
Prog Biophys Mol Biol. 2021 Aug;163:171-186. (PMID: 33636189)
Nat Methods. 2020 Mar;17(3):261-272. (PMID: 32015543)
Viruses. 2020 Jun 15;12(6):. (PMID: 32549200)
Protein Sci. 2006 Aug;15(8):1987-2001. (PMID: 16877712)
Biochemistry. 2020 Jul 21;59(28):2608-2615. (PMID: 32578982)
Proc Natl Acad Sci U S A. 2011 Jun 21;108(25):10174-7. (PMID: 21606332)
Proc Natl Acad Sci U S A. 1984 Jan;81(1):140-4. (PMID: 6582470)
Proteins. 2010 Apr;78(5):1195-211. (PMID: 19938154)
Acta Crystallogr B Struct Sci Cryst Eng Mater. 2016 Apr;72(Pt 2):171-9. (PMID: 27048719)
Farmaco. 2002 Mar;57(3):243-51. (PMID: 11989803)
Comput Biol Med. 2020 Oct;125:103963. (PMID: 32828990)
J Virol. 2008 Dec;82(24):12325-34. (PMID: 18922871)
Sci Data. 2019 Sep 10;6(1):169. (PMID: 31506435)
Nat Struct Biol. 1996 Oct;3(10):842-8. (PMID: 8836100)
BMC Bioinformatics. 2014 Jun 17;15:197. (PMID: 24938294)
Protein Sci. 1998 Sep;7(9):1884-97. (PMID: 9761470)
IUCrJ. 2020 Jul 17;7(Pt 5):814-824. (PMID: 32939273)
PLoS Comput Biol. 2009 Dec;5(12):e1000585. (PMID: 19997483)
Weitere Informationen
Background: Biomolecular interactions that modulate biological processes occur mainly in cavities throughout the surface of biomolecular structures. In the data science era, structural biology has benefited from the increasing availability of biostructural data due to advances in structural determination and computational methods. In this scenario, data-intensive cavity analysis demands efficient scripting routines built on easily manipulated data structures. To fulfill this need, we developed pyKVFinder, a Python package to detect and characterize cavities in biomolecular structures for data science and automated pipelines.
Results: pyKVFinder efficiently detects cavities in biomolecular structures and computes their volume, area, depth and hydropathy, storing these cavity properties in NumPy arrays. Benefited from Python ecosystem interoperability and data structures, pyKVFinder can be integrated with third-party scientific packages and libraries for mathematical calculations, machine learning and 3D visualization in automated workflows. As proof of pyKVFinder's capabilities, we successfully identified and compared ADRP substrate-binding site of SARS-CoV-2 and a set of homologous proteins with pyKVFinder, showing its integrability with data science packages such as matplotlib, NGL Viewer, SciPy and Jupyter notebook.
Conclusions: We introduce an efficient, highly versatile and easily integrable software for detecting and characterizing biomolecular cavities in data science applications and automated protocols. pyKVFinder facilitates biostructural data analysis with scripting routines in the Python ecosystem and can be building blocks for data science and drug design applications.
(© 2021. The Author(s).)