Result: A practical guide to interpreting and generating bottom-up proteomics data visualizations.

Title:
A practical guide to interpreting and generating bottom-up proteomics data visualizations.
Authors:
Schessner JP; Department of Proteomics and Signal Transduction, Max-Planck-Institute of Biochemistry, Planegg, Germany., Voytik E; Department of Proteomics and Signal Transduction, Max-Planck-Institute of Biochemistry, Planegg, Germany., Bludau I; Department of Proteomics and Signal Transduction, Max-Planck-Institute of Biochemistry, Planegg, Germany.
Source:
Proteomics [Proteomics] 2022 Apr; Vol. 22 (8), pp. e2100103. Date of Electronic Publication: 2022 Feb 15.
Publication Type:
Journal Article; Review; Research Support, Non-U.S. Gov't
Language:
English
Journal Info:
Publisher: Wiley-VCH Country of Publication: Germany NLM ID: 101092707 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1615-9861 (Electronic) Linking ISSN: 16159853 NLM ISO Abbreviation: Proteomics Subsets: MEDLINE
Imprint Name(s):
Original Publication: Weinheim, Germany : Wiley-VCH,
References:
Kelstrup, C. D., Jersie-Christensen, R. R., Batth, T. S., Arrey, T. N., Kuehn, A., Kellmann, M., & Olsen, J. V. (2014). Rapid and deep proteomes by faster sequencing on a benchtop quadrupole ultra-high-field Orbitrap mass spectrometer. . Journal of Proteome Research, 13, 6187-6195.
Linscheid, N., Santos, A., Poulsen, P. C., Mills, R. W., Calloe, K., Leurs, U., Ye, J. Z., Stolte, C., Thomsen, M. B., Bentzen, B. H., Lundegaard, P. R., Olesen, M. S., Jensen, L. J., Olsen, J. V., & Lundby, A. (2021). Quantitative proteome comparison of human hearts with those of model organisms. PLOS Biology, 19(4), e3001144.
Michalski, A., Cox, J., & Mann, M. (2011). More than 100,000 detectable peptide species elute in single shotgun proteomics runs but the majority is inaccessible to data-dependent LC-MS/MS. Journal of Proteome Research, 10, 1785-1793.
Nagaraj, N., Wisniewski, J. R., Geiger, T., Cox, J., Kircher, M., Kelso, J., Pääbo, S., & Mann, M. (2011). Deep proteome and transcriptome mapping of a human cancer cell line. Molecular Systems Biology, 7(1), 548.
Müller, J. B., Geyer, P. E., Colaço, A. R., Treit, P. V., Strauss, M. T., Oroshi, M., Doll, S., Winter, S. V., Bader, J. M., Köhler, N., Theis, F., Santos, A., & Mann, M. (2020). The proteome landscape of the kingdoms of life. Nature, 582, 592-596.
Aebersold, R., & Mann, M. (2016). Mass-spectrometric exploration of proteome structure and function. Nature, 537, 347-355.
Bache, N., Geyer, P. E., Bekker-Jensen, D. B., Hoerning, O., Falkenby, L., Treit, P. V, Doll, S., Paron, I., Müller, J. B., Meier, F., Olsen, J. V, Vorm, O., & Mann, M. (2018). A novel LC system embeds analytes in pre-formed gradients for rapid, ultra-robust proteomics. Molecular and Cellular Proteomics, 17, 2284-2296.
Beck, S., Michalski, A., Raether, O., Lubeck, M., Kaspar, S., Goedecke, N., Baessmann, C., Hornburg, D., Meier, F., Paron, I., Kulak, N. A., Cox, J., & Mann, M. (2015). The impact II, a very high-resolution quadrupole time-of-flight instrument (QTOF) for deep shotgun proteomics. Molecular and Cellular Proteomics, 14, 2014-2029.
Buryakov, I. A., Krylov, E. V., Nazarov, E. G., & Rasulev, U. K. (1993). A new method of separation of multi-atomic ions by mobility at atmospheric pressure using a high-frequency amplitude-asymmetric strong electric field. International Journal of Mass Spectrometry and Ion Processes, 128(3), 143.-148.
Hebert, A. S., Prasad, S., Belford, M. W., Bailey, D. J., McAlister, G. C., Abbatiello, S. E., Huguet, R., Wouters, E. R., Dunyach, J.-J., Brademan, D. R., Westphall, M. S., & Coon, J. J. (2018). Comprehensive single-shot proteomics with FAIMS on a hybrid orbitrap mass spectrometer. Analytical Chemistry, 90, 9529-9537.
Silveira, J. A., Michelmann, K., Ridgeway, M. E., & Park, M. A. (2016). Fundamentals of trapped ion mobility spectrometry part II: Fluid dynamics. Journal of the American Society for Mass Spectrometry, 27, 585-595.
Rodriguez-Suarez, E., Hughes, C., Gethings, L., Giles, K., Wildgoose, J., Stapels, M. E., Fadgen, K. J., Geromanos, S. P. C., Vissers, J., Elortza, F. I., & Langridge, J. (2013). An ion mobility assisted data independent LC-MS strategy for the analysis of complex biological samples. Current Analytical Chemistry, 9(2), 199-211.
Helm, D., Vissers, J. P. C., Hughes, C. J., Hahne, H., Ruprecht, B., Pachl, F., Grzyb, A., Richardson, K., Wildgoose, J., Maier, S. K., Marx, H., Wilhelm, M., Becher, I., Lemeer, S., Bantscheff, M., Langridge, J. I., & Kuster, B. (2014). Ion mobility tandem mass spectrometry enhances performance of bottom-up proteomics. Molecular & Cellular Proteomics, 13(12), 3709-3715.
Gillet, L. C., Navarro, P., Tate, S., Röst, H., Selevsek, N., Reiter, L., Bonner, R., Aebersold, R. (2012). Targeted data extraction of the MS/MS spectra generated by data-independent acquisition: A new concept for consistent and accurate proteome analysis. Molecular & Cellular Proteomics, 11(6), O111.016717.
Meier, F., Geyer, P. E., Winter, S. V., Cox, J., & Mann, M. (2018). BoxCar acquisition method enables single-shot proteomics at a depth of 10,000 proteins in 100 minutes. Nature Methods, 15, 440-448.
Meier, F., Beck, S., Grassl, N., Lubeck, M., Park, M. A., Raether, O., & Mann, M. (2015). Parallel accumulation-serial fragmentation (PASEF): Multiplying sequencing speed and sensitivity by synchronized scans in a trapped ion mobility device. Journal of Proteome Research, 14, 5378-5387.
Geromanos, S. J., Vissers, J. P. C., Silva, J. C., Dorschel, C. A., Li, G.-Z., Gorenstein, M. V., Bateman, R. H., & Langridge, J. I. (2009). The detection, correlation, and comparison of peptide precursor and product ions from data independent LC-MS with data dependant LC-MS/MS. Proteomics, 9, 1683-1695.
Messner, C. B., Demichev, V., Wendisch, D., Michalick, L., White, M., Freiwald, A., Textoris-Taube, K., Vernardis, S. I., Egger, A. S., Kreidl, M., Ludwig, D., Kilian, C., Agostini, F., Zelezniak, A., Thibeault, C., Pfeiffer, M., Hippenstiel, S., Hocke, A., von Kalle, C., … Ralser, M. (2020). Ultra-high-throughput clinical proteomics reveals classifiers of COVID-19 infection. Cell Systems, 11, 11-24.e4.
Messner, C. B., Demichev, V., Bloomfield, N., Yu, J. S. L., White, M., Kreidl, M., Egger, A. S., Freiwald, A., Ivosev, G., Wasim, F., Zelezniak, A., Jürgens, L., Suttorp, N., Sander, L. E., Kurth, F., Lilley, K. S., Mülleder, M., Tate, S., & Ralser, M. (2021). Ultra-fast proteomics with Scanning SWATH. Nature Biotechnology, 39(7), 846-854.
Demichev, V., Messner, C. B., Vernardis, S. I., Lilley, K. S., & Ralser, M. (2020). DIA-NN: neural networks and interference correction enable deep proteome coverage in high throughput. Nature Methods, 17, 41-44.
Gessulat, S., Schmidt, T., Zolg, D. P., Samaras, P., Schnatbaum, K., Zerweck, J., Knaute, T., Rechenberger, J., Delanghe, B., Huhmer, A., Reimer, U., Ehrlich, H.-C., Aiche, S., Kuster, B., & Wilhelm, M. (2019). Prosit: Proteome-wide prediction of peptide tandem mass spectra by deep learning. Nature Methods, 16, 509-518.
Kong, A. T., Leprevost, F. V, Avtonomov, D. M., Mellacheruvu, D., & Nesvizhskii, A. I. (2017). MSFragger: ultrafast and comprehensive peptide identification in mass spectrometry-based proteomics. Nature Methods, 14, 513-520.
Tiwary, S., Levy, R., Gutenbrunner, P., Salinas Soto, F., Palaniappan, K. K., Deming, L., Berndl, M., Brant, A., Cimermancic, P., & Cox, J. (2019). High-quality MS/MS spectrum prediction for data-dependent and data-independent acquisition data analysis. Nature Methods, 16, 519-525.
Zhou, X.-X., Zeng, W.-F., Chi, H., Luo, C., Liu, C., Zhan, J., He, S.-M., & Zhang, Z. (2017). pDeep: Predicting MS/MS spectra of peptides with deep learning. Analytical Chemistry 89, 12690-12697.
Gehlenborg, N., O'Donoghue, S. I., Baliga, N. S., Goesmann, A., Hibbs, M. A., Kitano, H., Kohlbacher, O., Neuweger, H., Schneider, R., Tenenbaum, D., & Gavin, A. C. (2010). Visualization of omics data for systems biology. Nature Methods 2010 7:3, 7, S56-S68.
Pavlopoulos, G. A., Secrier, M., Moschopoulos, C. N., Soldatos, T. G., Kossida, S., Aerts, J., Schneider, R., & Bagos, P. G. (2011). Using graph theory to analyze biological networks. BioData Mining, 4, 1-27.
Adams, K. J., Pratt, B., Bose, N., Dubois, L. G., John-Williams, L. St., Perrott, K. M., Ky, K., Kapahi, P., Sharma, V., MacCoss, M. J., Moseley, M. A., Colton, C. A., MacLean, B. X., Schilling, B., Thompson, J. W., & Consortium, A. D. M. (2020). Skyline for small molecules: a unifying software package for quantitative metabolomics. Journal of Proteome Research, 19, 1447-1458.
Bruderer, R., Bernhardt, O. M., Gandhi, T., Miladinović, S. M., Cheng, L.-Y., Messner, S., Ehrenberger, T., Zanotelli, V., Butscheid, Y., Escher, C., Vitek, O., Rinner, O., & Reiter, L. (2015). Extending the limits of quantitative proteome profiling with data-independent acquisition and application to acetaminophen-treated three-dimensional liver microtissues. Molecular & Cellular Proteomics, 14(5), 1400-1410.
Tyanova, S., Temu, T., Sinitcyn, P., Carlson, A., Hein, M. Y., Geiger, T., Mann, M., & Cox, J. (2016). The Perseus computational platform for comprehensive analysis of (prote)omics data. Nature Methods, 13, 731-740.
Tyanova, S., Temu, T., Carlson, A., Sinitcyn, P., Mann, M., & Cox, J. (2015). Visualization of LC-MS/MS proteomics data in MaxQuant. Proteomics, 15, 1453-1456.
Oveland, E., Muth, T., Rapp, E., Martens, L., Berven, F. S., & Barsnes, H. (2015). Viewing the proteome: How to visualize proteomics data?. PROTEOMICS, 15, 1341-1355.
Perez-Riverol, Y., Wang, R., Hermjakob, H., Müller, M., Vesada, V., & Vizcaíno, J. A. (2014). Open source libraries and frameworks for mass spectrometry based proteomics: A developer's perspective. Biochimica et Biophysica Acta - Proteins and Proteomics, 1844, 63-76.
Gatto, L., Breckels, L. M., Naake, T., & Gibb, S. (2015). Visualization of proteomics data using R and bioconductor. Proteomics, 15, 1375-1389.
Sinha, A., & Mann, M. (2020). A beginner’s guide to mass spectrometry-based proteomics. The Biochemist, 42(5), 64-69.
Deutsch, E. W. (2012). File formats commonly used in mass spectrometry proteomics. Molecular & Cellular Proteomics, 11, 1612-1621.
Bittremieux, W., Valkenborg, D., Martens, L., & Laukens, K. (2017). Computational quality control tools for mass spectrometry proteomics. PROTEOMICS, 17(3-4), 1600159.
Perez-Riverol, Y., Xu, Q.-W., Wang, R., Uszkoreit, J., Griss, J., Sanchez, A., Reisinger, F., Csordas, A., Ternent, T., Del-Toro, N., Dianes, J. A., Eisenacher, M., Hermjakob, H., & Vizcaíno, J. A. (2016). PRIDE inspector toolsuite: Moving toward a universal visualization tool for proteomics data standard formats and quality assessment of proteomexchange datasets. Molecular & Cellular Proteomics : MCP, 15, 305-317.
Noga, M., Sucharski, F., Suder, P., & Silberring, J. (2007). A practical guide to nano-LC troubleshooting. Journal of Separation Science, 30, 2179-2189.
Rudnick, P. A., Clauser, K. R., Kilpatrick, L. E., Tchekhovskoi, D. v., Neta, P., Blonder, N., Billheimer, D. D., Blackman, R. K., Bunk, D. M., Cardasis, H. L., Ham, A. J. L., Jaffe, J. D., Kinsinger, C. R., Mesri, M., Neubert, T. A., Schilling, B., Tabb, D. L., Tegeler, T. J., Vega-Montoto, L., … Stein, S. E. (2010). Performance metrics for liquid chromatography-tandem mass spectrometry systems in proteomics analyses. Molecular & Cellular Proteomics, 9, 225-241.
Cox, J., & Mann, M. (2008). MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nature Biotechnology, 26, 1367-1372.
Avtonomov, D. M., Raskind, A., & Nesvizhskii, A. I. (2016). BatMass: A Java software platform for LC-MS data visualization in proteomics and metabolomics. Journal of Proteome Research, 15, 2500-2509.
Meier, F., Park, M. A., & Mann, M. (2021). Trapped ion mobility spectrometry and parallel accumulation-serial fragmentation in proteomics. Molecular & Cellular Proteomics, 20, 5378-5387.
Ting, Y. S., Egertson, J. D., Payne, S. H., Kim, S., MacLean, B., Käll, L., Aebersold, R., Smith, R. D., Noble, W. S., & MacCoss, M. J. (2015). Peptide-centric proteome analysis: An alternative strategy for the analysis of tandem mass spectrometry data. Molecular & Cellular Proteomics, 14(9), 2301-2307.
Perkins, D. N., Pappin, D. J. C., Creasy, D. M., & Cottrell, J. S. (1999). Probability-based protein identification by searching sequence databases using mass spectrometry data. 3551-3567.
Cox, J., Neuhauser, N., Michalski, A., Scheltema, R. A., Olsen, J. v., & Mann, M. (2011). Andromeda: A peptide search engine integrated into the Maxquant environment. Journal of Proteome Research, 10, 1794-1805.
Strauss, M. T., Bludau, I., Zeng, W.-F., Voytik, E., Ammar, C., Schessner, J., Ilango, R., Gill, M., Meier, F., Willems, S., , (2021). AlphaPept, a modern and open framework for MS-based proteomics. bioRxiv, 2021.07.23.453379.https://www.biorxiv.org/content/10.1101/2021.07.23.453379.
Koutrouli, M., Karatzas, E., Paez-Espino, D., & Pavlopoulos, G. A. (2020). A guide to conquer the biological network era using graph theory. Frontiers in Bioengineering and Biotechnology, 8, https://doi.org/10.3389/fbioe.2020.00034.
Hu, A., Noble, W. S., Wolf-Yadlin, A., Hu, A., Noble, W. S. & Wolf-Yadlin, A. (2016). Technical advances in proteomics: new developments in data-independent acquisition F1000Research, 5, 419.
Ludwig, C., Gillet, L., Rosenberger, G., Amon, S., Collins, B. C., & Aebersold, R. (2018). Data-independent acquisition-based SWATH - MS for quantitative proteomics: A tutorial. Molecular Systems Biology, 14(8), e8126.
Tsou, C.-C., Avtonomov, D., Larsen, B., Tucholska, M., Choi, H., Gingras, A.-C., & Nesvizhskii, A. I. (2015). DIA-Umpire: Comprehensive computational framework for data-independent acquisition proteomics. Nature Methods 2015 12:3, 12, 258-264.
Havilio, M., & Wool, A. (2007). Large-scale unrestricted identification of post-translation modifications using tandem mass spectrometry. Analytical Chemistry, 79, 1362-1368.
Boersema, P. J., Mohammed, S., & Heck, A. J. R. (2009). Phosphopeptide fragmentation and analysis by mass spectrometry. Journal of Mass Spectrometry, 44, 861-878.
Wiśniewski, J. R., Zettl, K., Pilch, M., Rysiewicz, B., & Sadok, I. (2020). “Shotgun” proteomic analyses without alkylation of cysteine. Analytica Chimica Acta, 1100, 131-137.
Thompson, A., Schäfer, J., Kuhn, K., Kienle, S., Schwarz, J., Schmidt, G., Neumann, T., & Hamon, C. (2003). Tandem mass tags: A novel quantification strategy for comparative analysis of complex protein mixtures by MS/MS. Analytical Chemistry, 75, 1895-1904.
Virreira Winter, S., Meier, F., Wichmann, C., Cox, J., Mann, M., & Meissner, F. (2018). EASI-tag enables accurate multiplexed and interference-free MS2-based proteome quantification. Nature Methods, 15, 527-530.
Desiere, F. (2006). The PeptideAtlas project. Nucleic Acids Research, 34(90001), D655-D658.
Hornbeck, P. V., Zhang, B., Murray, B., Kornhauser, J. M., Latham, V., & Skrzypek, E. (2015). PhosphoSitePlus, 2014: Mutations, PTMs and recalibrations. Nucleic Acids Research, 43(D1), D512-D520.
Voytik, E., Bludau, I., Willems, S., Hansen, F. M., Brunner, A.-D., Strauss, M. T., & Mann, M. (2021). AlphaMap: An open-source Python package for the visual annotation of proteomics data with sequence-specific knowledge. Bioinformatics, 38, 849-852.
Claassen, M. (2012). Inference and validation of protein identifications. Molecular & Cellular Proteomics, 11(11), 1097-1104.
Nesvizhskii, A. I., Keller, A., Kolker, E., & Aebersold, R. (2003). A statistical model for identifying proteins by tandem mass spectrometry. Analytical Chemistry, 75, 4646-4658.
Matzke, M. M., Brown, J. N., Gritsenko, M. A., Metz, T. O., Pounds, J. G., Rodland, K. D., Shukla, A. K., Smith, R. D., Waters, K. M., McDermott, J. E., & Webb-Robertson, B.-J. (2013). A comparative analysis of computational approaches to relative protein quantification using peptide peak intensities in label-free LC-MS proteomics experiments. Proteomics, 13, 493-503.
Schmidt, R. M., Schessner, J. P., Borner, G. H. H., & Schuck, S. (2019). The proteasome biogenesis regulator Rpn4 cooperates with the unfolded protein response to promote ER stress resistance. eLife, 8, https://doi.org/10.7554/elife.43244.
Schwanhäusser, B., Busse, D., Li, N., Dittmar, G., Schuchhardt, J., Wolf, J., Chen, Wei, & Selbach, M. (2011). Global quantification of mammalian gene expression control. Nature, 473(7347), 337-342.
Wiśniewski, J. R., Hein, M. Y., Cox, J., & Mann, M. (2014). A “Proteomic Ruler” for protein copy number and concentration estimation without spike-in standards. Molecular & Cellular Proteomics, 13(12), 3497-3506.
Krzywinski, M., & Altman, N. (2014). Comparing samples-part I. Nature Methods, 11(3), 215-216.
Krzywinski, M., & Altman, N. (2014). Comparing samples-part II. Nature Methods, 11(4), 355-356.
Krzywinski, M., & Altman, N. (2013). Power and sample size. Nature Methods, 10(12), 1139-1140.
Tusher, V. G., Tibshirani, R., & Chu, G. (2001). Significance analysis of microarrays applied to the ionizing radiation response. Proceedings of the National Academy of Sciences, 98, 5116-5121.
Maleki, F., Ovens, K., Hogan, D. J., & Kusalik, A. J. (2020). Gene set analysis: Challenges, opportunities, and future research. Frontiers in Genetics, 11, https://doi.org/10.3389/fgene.2020.00654.
Fisher, R. A. (1922). On the interpretation of χ 2 from contingency tables, and the calculation of P. Journal of the Royal Statistical Society, 85(1), 87-94.
Subramanian, A., Tamayo, P., Mootha, V. K., Mukherjee, S., Ebert, B. L., Gillette, M. A., Paulovich, A., Pomeroy, S. L., Golub, T. R., Lander, E. S., & Mesirov, J. P. (2005). Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proceedings of the National Academy of Sciences, 102, 15545-15550.
Ashburner, M., Ball, C. A., Blake, J. A., Botstein, D., Butler, H., Cherry, J. M., Davis, A. P., Dolinski, K., Dwight, S. S., Eppig, J. T., Harris, M. A., Hill, D. P., Issel-Tarver, L., Kasarskis, A., Lewis, S., Matese, J. C., Richardson, J. E., Ringwald, M., Rubin, G. M., & Sherlock, G. (2000). Gene ontology: Tool for the unification of biology. The gene ontology consortium. Nature Genetics, 25, 25-29.
The gene ontology resource: Enriching a GOld mine. (2021). Nucleic Acids Research, 49, D325-D334.
Khatri, P., & Draghici, S. (2005). Ontological analysis of gene expression data: current tools, limitations, and open problems. Bioinformatics, 21(18), 3587-3595.
Snel, B. (2000). STRING: a web-server to retrieve and display the repeatedly occurring neighbourhood of a gene. Nucleic Acids Research, 28(18), 3442-3444.
Mi, H., Ebert, D., Muruganujan, A., Mills, C., Albou, L. P., Mushayamaha, T., & Thomas, P. D. (2021). PANTHER version 16: A revised family classification, tree-based classification tool, enhancer regions and extensive API. Nucleic Acids Research, 49, D394-D403.
Brüning, F., Noya, S. B., Bange, T., Koutsouli, S., Rudolph, J. D., Tyagarajan, S. K., Cox, J., Mann, M., Brown, S. A., & Robles, M. S. (2019). Sleep-wake cycles drive daily dynamics of synaptic phosphorylation. Science, 366(6462), https://doi.org/10.1126/science.aav3617.
Davies, A. K., Itzhak, D. N., Edgar, J. R., Archuleta, T0 L., Hirst, J., Jackson, L. P., Robinson, M. S., & Borner, G. H. H. (2018). AP-4 vesicles contribute to spatial control of autophagy via RUSC-dependent peripheral delivery of ATG9A. Nature Communications, 9(1), https://doi.org/10.1038/s41467-018-06172-7.
Bludau, I., Heusel, M., Frank, M., Rosenberger, G., Hafen, R., Banaei-Esfahani, A., van Drogen, A., Collins, B. C., Gstaiger, M., & Aebersold, R. (2020). Complex-centric proteome profiling by SEC-SWATH-MS for the parallel detection of hundreds of protein complexes. Nature Protocols, 15(8), 2341-2386.
Jean Beltran, P. M., Mathias, R. A., & Cristea, I. M. (2016). A portrait of the human organelle proteome in space and time during cytomegalovirus infection. Cell Systems, 3, 361-373.e6.
Pangratz-Fuehrer, S., Genzel-Boroviczény, O., Bodensohn, W., Eisenburger, R., Scharpenack, J., Geyer, P. E., Müller-Reif, J. B., van Hagen, N., Müller, A. M., Jensen, M. K., Klein, C., Mann, M., & Nussbaum, C. (2021). Cohort profile: the MUNICH preterm and term clinical study (MUNICH-PreTCl), a neonatal birth cohort with focus on prenatal and postnatal determinants of infant and childhood morbidity. BMJ Open, 11(6), e050652.
Hotelling, H. (1933). Analysis of a complex of statistical variables into principal components. Journal of Educational Psychology, 24(7), 498-520.
Van Der Maaten, L., & Hinton, G. (2008). Visualizing Data using t-SNE. Journal of Machine Learning Research, 9, 2579-2605. http://jmlr.org/papers/v9/vandermaaten08a.html.
Mcinnes, L., Healy, J. & Melville, J. (2020). UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction. https://arxiv.org/abs/1802.03426.
Do, J. H., & Choi, D.-K. (2008). Clustering approaches to identifying gene expression patterns from DNA microarray data. Molecules and Cells, 25, 279-288.
Hein, M. Y., Hubner, N. C., Poser, I., Cox, J., Nagaraj, N., Toyoda, Y., Gak, I. A., Weisswange, I., Mansfeld, J., Buchholz, F., Hyman, A. A., & Mann, M. (2015). A human interactome in three quantitative dimensions organized by stoichiometries and abundances. Cell, 163, 712-723.
Huttlin, E. L., Bruckner, R. J., Navarrete-Perea, J., Cannon, J. R., Baltier, K., Gebreab, F., Gygi, M. P., Thornock, A., Zarraga, G., Tam, S., Szpyt, J., Gassaway, B. M., Panov, A., Parzen, H., Fu, S., Golbazi, A., Maenpaa, E., Stricker, K., Guha Thakurta, S., … Gygi, S. P. (2021). Dual proteome-scale networks reveal cell-specific remodeling of the human interactome. Cell, 184, 3022-3040.e28.
Kirkwood, K. J., Ahmad, Y., Larance, M., & Lamond, A. I. (2013). Characterization of native protein complexes and protein isoform variation using size-fractionation-based quantitative proteomics. Molecular & Cellular Proteomics : MCP, 12, 3851-3873.
Shi, Y., Ding, Y., Li, G., Wang, L., Osman, R. A., Sun, J., Qian, L., Zheng, G., & Zhang, G. (2021). Discovery of novel biomarkers for diagnosing and predicting the progression of multiple sclerosis using TMT-based quantitative proteomics. Frontiers in Immunology, 12, https://doi.org/10.3389/fimmu.2021.700031.
Joshi-Tope, G. (2004). Reactome: A knowledgebase of biological pathways. Nucleic Acids Research, 33(Database issue), D428-D432.
Shannon, P., Markiel, A., Ozier, O., Baliga, N. S., Wang, J. T., Ramage, D., Amin, N., Schwikowski, B., & Ideker, T. (2003). Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Research, 13(11), 2498-2504.
Rudolph, J. D., & Cox, J. (2019). A network module for the perseus software for computational proteomics facilitates proteome interaction graph analysis. Journal of Proteome Research, 18, 2052-2064.
Otasek, D., Morris, J. H., Bouças, J., Pico, A. R., & Demchak, B0 (2019) Cytoscape automation: Empowering workflow-based network analysis. Genome Biology, 20(1), https://doi.org/10.1186/s13059-019-1758-4.
Hagberg, A, Swart, P. & S Chult, D. (2008). Exploring network structure, dynamics, and function using networkx. https://www.osti.gov/biblio/960616.
Butts, C. T. (2008). Network: A package for managing relational data inR. Journal of Statistical Software, 24(2), 1-36.
Santos, A., Colaço, A. R., Nielsen, A. B., Niu, L., Strauss, M., Geyer, P. E., Coscia, F., Albrechtsen, N. J. W., Mundt, F., Jensen, L. J., & Mann, M. (2022). A knowledge graph to interpret clinical proteomics data. Nature Biotechnology, https://doi.org/10.1038/s41587-021-01145-6.
Baker, M. (2016). 1,500 scientists lift the lid on reproducibility. Nature, 533, 452-454.
Bittremieux, W., Adams, C., Laukens, K., Dorrestein, P. C., & Bandeira, N. (2021). Open science resources for the mass spectrometry-based analysis of SARS-CoV-2. J. Proteome Res., 20, 1464-1475.
Perez, F., Granger, B. E., & Hunter, J. D. (2011). Python: An ecosystem for scientific computing. Computing in Science & Engineering, 13(2), 13-21.
Hunter, J. D. (2007). Matplotlib: A 2D graphics environment. Computing in Science & Engineering, 9(3), 90-95.
Waskom, M., Botvinnik, O., O'Kane, D., Hobson, P., Lukauskas, S., Gemperline, D. C., Augspurger, T., Halchenko, Y., Cole, J. B., Warmenhoven, J., Ruiter, J., Pye, C., Hoyer, S., Vanderplas, J., Villalba, S., Kunter, G., Quintero, E., Bachant, P., Martin, M. & Qalieh, A. …, (2017). mwaskom/seaborn: v0.8.1 (September 2017). Zenodo. https://doi.org/10.5281/zenodo.883859.
Petras, D., Phelan, V. V., Acharya, D., Allen, A. E., Aron, A. T., Bandeira, N., Bowen, B. P., Belle-Oudry, D., Boecker, S., Cummings, D. A., Deutsch, J. M., Fahy, E., Garg, N., Gregor, R., Handelsman, J., Navarro-Hoyos, M., Jarmusch, A. K., Jarmusch, S. A., Louie, K., Maloney, K. N., Marty, M. T., Meijler, M. M., Mizrahi, I., Neve, R. L., Northen, T. R., Molina-Santiago, C., Panitchpakdi, M., Pullman, B., Puri, A. W., Schmid, R., …, (2021). GNPS Dashboard: Collaborative exploration of mass spectrometry data in the web browser. Nature Methods, https://doi.org/10.1038/s41592-021-01339-5.
Hansen, F. M., Tanzer, M. C., Brüning, F., Bludau, I., Stafford, C., Schulman, B. A., Robles, M. S., Karayel, O., & Mann, M. (2021). Data-independent acquisition method for ubiquitinome analysis reveals regulation of circadian biology. Nature Communications, 12(1), https://doi.org/10.1038/s41467-020-20509-1.
Martin-Jaular, L., Nevo, N., Schessner, J. P., Tkach, M., Jouve, M., Dingli, F., Loew, D., Witwer, K. W., Ostrowski, M., Borner, G. H. H., & Théry, C. (2021). Unbiased proteomic profiling of host cell extracellular vesicle composition and dynamics upon HIV-1 infection. The EMBO Journal, 40(8), e105492.
Meier, F., Köhler, N. D., Brunner, A.-D., Wanka, J.-M. H., Voytik, E., Strauss, M. T., Theis, F. J., & Mann, M. (2021). Deep learning the collisional cross sections of the peptide universe from a million experimental values. Nature Communications, 12(1), https://doi.org/10.1038/s41467-021-21352-8.
Bisong, E. (2019). Google Colaboratory. In E. Bisong (Ed.), Building machine learning and deep learning models on google cloud platform: A comprehensive guide for beginners (pp. 59-64). Apress. https://doi.org/10.1007/978-1-4842-4470-8_7.
Perez-Riverol, Y., Gatto, L., Wang, R., Sachsenberg, T., Uszkoreit, J., Leprevost, F. da V., Fufezan, C., Ternent, T., Eglen, S. J., Katz, D. S., Pollard, T. J., Konovalov, A., Flight, R. M., Blin, K., & Vizcaíno, J. A. (2016). Ten simple rules for taking advantage of git and GitHub. PLOS Computational Biology, 12(7), e1004947.
Meier, F., Brunner, A.-D., Frank, M., Ha, A., Bludau, I., Voytik, E., Kaspar-Schoenefeld, S., Lubeck, M., Raether, O., Bache, N., Aebersold, R., Collins, B. C., Röst, H. L., & Mann, M. (2020). diaPASEF: Parallel accumulation-serial fragmentation combined with data-independent acquisition. Nature Methods, 17, 1229-1236.
Itzhak, D. N., Tyanova, S., Cox, J., & Borner, G. H. H. (2016). Global, quantitative and dynamic mapping of protein subcellular localization. eLife, 5, https://doi.org/10.7554/elife.16950.
Bald, T., Barth, J., Niehues, A., Specht, M., Hippler, M., & Fufezan, C. (2012). pymzML-Python module for high-throughput bioinformatics on mass spectrometry data. Bioinformatics, 28(7), 1052-1053.
Kösters, M., Leufken, J., Schulze, S., Sugimoto, K., Klein, J., Zahedi, R. P., Hippler, M., Leidel, S. A., & Fufezan, C. (2018). pymzML v2.0: Introducing a highly compressed and seekable gzip format. Bioinformatics, 34, 2513-2514.
Goloborodko, A. A., Levitsky, L. I., Ivanov, M. V., & Gorshkov, M. V. (2013). Pyteomics-a Python framework for exploratory data analysis and rapid software prototyping in proteomics. Journal of the American Society for Mass Spectrometry, 24(2), 301-304.
Levitsky, L. I., Klein, J. A., Ivanov, M. V, & Gorshkov, M. V. (2019). Pyteomics 4.0: Five years of development of a Python proteomics framework. Journal of Proteome Research, 18, 709-714.
Röst, H. L., Schmitt, U., Aebersold, R., & Malmström, L. (2014). pyOpenMS: a Python-based interface to the OpenMS mass-spectrometry algorithm library. Proteomics, 14, 74-77.
Alexander, W. M., Ficarro, S. B., Adelmant, G., & Marto, J. A. (2017). multiplierz v2.0: A Python-based ecosystem for shared access and analysis of native mass spectrometry data. Proteomics, 17(15-16), 1700091.
Ressa, A., Fitzpatrick, M., van den Toorn, H., Heck, A. J. R., & Altelaar, M. (2019). PaDuA: A Python library for high-throughput (phospho)proteomics data analysis. J Proteome Research, 18, 576-584.
Willems, S., Voytik, E., Skowronek, P., Strauss, M. T., & Mann, M. (2021). AlphaTims: Indexing trapped ion mobility spectrometry-TOF data for fast and easy accession and visualization. Molecular & Cellular Proteomics, 20, 100149.
Bittremieux, W. (2020). spectrum_utils: A python package for mass spectrometry data processing and visualization. Analytical Chemistry, 92(1), 659-661.
Contributed Indexing:
Keywords: bottom-up proteomics; data visualization; open science; science communication
Substance Nomenclature:
0 (Peptides)
Entry Date(s):
Date Created: 20220202 Date Completed: 20220415 Latest Revision: 20220516
Update Code:
20250114
DOI:
10.1002/pmic.202100103
PMID:
35107884
Database:
MEDLINE

Further Information

Mass-spectrometry based bottom-up proteomics is the main method to analyze proteomes comprehensively and the rapid evolution of instrumentation and data analysis has made the technology widely available. Data visualization is an integral part of the analysis process and it is crucial for the communication of results. This is a major challenge due to the immense complexity of MS data. In this review, we provide an overview of commonly used visualizations, starting with raw data of traditional and novel MS technologies, then basic peptide and protein level analyses, and finally visualization of highly complex datasets and networks. We specifically provide guidance on how to critically interpret and discuss the multitude of different proteomics data visualizations. Furthermore, we highlight Python-based libraries and other open science tools that can be applied for independent and transparent generation of customized visualizations. To further encourage programmatic data visualization, we provide the Python code used to generate all data figures in this review on GitHub (https://github.com/MannLabs/ProteomicsVisualization).
(© 2022 The Authors. Proteomics published by Wiley-VCH GmbH.)