Serviceeinschränkungen vom 12.-22.02.2026 - weitere Infos auf der UB-Homepage

Treffer: High-performance piezoelectric composites via β phase programming.

Title:
High-performance piezoelectric composites via β phase programming.
Authors:
Su Y; State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, 610054, Chengdu, China., Li W; State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, 610054, Chengdu, China., Cheng X; Department of Materials Science and Engineering, The Pennsylvania State University, State College, PA, 16802, USA., Zhou Y; Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA., Yang S; Electronic Materials Research Lab, Key Lab of Education Ministry/International Center for Dielectric Research, School of Electronic and Information Engineering, State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, 710049, Xi'an, China., Zhang X; School of Materials Science and Engineering, Research Center for Materials Genome Engineering, Wuhan University of Technology, 430070, Wuhan, China., Chen C; State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, 610054, Chengdu, China., Yang T; Department of Materials Science and Engineering, The Pennsylvania State University, State College, PA, 16802, USA. tuy123@psu.edu., Pan H; State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, 610054, Chengdu, China., Xie G; State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, 610054, Chengdu, China., Chen G; Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA., Zhao X; Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA., Xiao X; Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA., Li B; School of Materials Science and Engineering, Research Center for Materials Genome Engineering, Wuhan University of Technology, 430070, Wuhan, China. libei@whut.edu.cn., Tai H; State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, 610054, Chengdu, China., Jiang Y; State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, 610054, Chengdu, China., Chen LQ; Department of Materials Science and Engineering, The Pennsylvania State University, State College, PA, 16802, USA., Li F; Electronic Materials Research Lab, Key Lab of Education Ministry/International Center for Dielectric Research, School of Electronic and Information Engineering, State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, 710049, Xi'an, China. ful5@xjtu.edu.cn., Chen J; Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA. jun.chen@ucla.edu.
Source:
Nature communications [Nat Commun] 2022 Aug 18; Vol. 13 (1), pp. 4867. Date of Electronic Publication: 2022 Aug 18.
Publication Type:
Journal Article; Research Support, Non-U.S. Gov't; Research Support, U.S. Gov't, Non-P.H.S.
Language:
English
Journal Info:
Publisher: Nature Pub. Group Country of Publication: England NLM ID: 101528555 Publication Model: Electronic Cited Medium: Internet ISSN: 2041-1723 (Electronic) Linking ISSN: 20411723 NLM ISO Abbreviation: Nat Commun Subsets: MEDLINE
Imprint Name(s):
Original Publication: [London] : Nature Pub. Group
MeSH Terms:
References:
Chem Rev. 2020 Apr 22;120(8):3668-3720. (PMID: 32202762)
Adv Mater. 2021 Jan;33(3):e2006093. (PMID: 33274802)
Phys Chem Chem Phys. 2015 Apr 21;17(15):9997-10003. (PMID: 25785395)
Nat Commun. 2022 Mar 16;13(1):1391. (PMID: 35296663)
Nature. 2020 Jan;577(7790):350-354. (PMID: 31942055)
Science. 2021 Jun 11;372(6547):. (PMID: 34112665)
Nat Mater. 2018 Apr;17(4):349-354. (PMID: 29555999)
Nature. 2018 Oct;562(7725):96-100. (PMID: 30283102)
iScience. 2020 Jul 24;23(7):101286. (PMID: 32622264)
Science. 2019 Apr 19;364(6437):264-268. (PMID: 31000659)
Nat Commun. 2019 Apr 23;10(1):1843. (PMID: 31015446)
J Phys Chem B. 2012 Jan 19;116(2):794-801. (PMID: 22172028)
Chem Soc Rev. 2022 May 10;51(9):3380-3435. (PMID: 35352069)
Nat Commun. 2020 May 11;11(1):2351. (PMID: 32393749)
ACS Nano. 2018 Apr 24;12(4):3369-3377. (PMID: 29624367)
Nat Mater. 2020 Nov;19(11):1169-1174. (PMID: 32601482)
Phys Chem Chem Phys. 2015 Jan 14;17(2):1368-78. (PMID: 25424552)
Chem Rev. 2022 Feb 9;122(3):3259-3291. (PMID: 34939791)
Sci Rep. 2018 Jan 10;8(1):378. (PMID: 29321656)
Nat Commun. 2020 Feb 25;11(1):1030. (PMID: 32098958)
ACS Appl Mater Interfaces. 2018 Dec 5;10(48):41070-41075. (PMID: 30398047)
Adv Mater. 2018 Jan;30(2):. (PMID: 29164775)
Small Methods. 2022 Feb;6(2):e2101051. (PMID: 35174985)
Nature. 2008 Feb 14;451(7180):809-13. (PMID: 18273015)
Nat Commun. 2019 Oct 18;10(1):4535. (PMID: 31628311)
Adv Mater. 2021 Sep;33(35):e2101262. (PMID: 34240473)
Adv Mater. 2019 May;31(21):e1807722. (PMID: 30924237)
Science. 1983 Jun 10;220(4602):1115-21. (PMID: 17818472)
ACS Appl Mater Interfaces. 2019 Oct 16;11(41):38177-38189. (PMID: 31580638)
Small. 2022 Apr;18(15):e2104472. (PMID: 35187776)
Substance Nomenclature:
0 (Polymers)
Entry Date(s):
Date Created: 20220818 Date Completed: 20220822 Latest Revision: 20220909
Update Code:
20250114
PubMed Central ID:
PMC9388583
DOI:
10.1038/s41467-022-32518-3
PMID:
35982033
Database:
MEDLINE

Weitere Informationen

Polymer-ceramic piezoelectric composites, combining high piezoelectricity and mechanical flexibility, have attracted increasing interest in both academia and industry. However, their piezoelectric activity is largely limited by intrinsically low crystallinity and weak spontaneous polarization. Here, we propose a Ti <subscript>3</subscript> C <subscript>2</subscript> T <subscript>x</subscript> MXene anchoring method to manipulate the intermolecular interactions within the all-trans conformation of a polymer matrix. Employing phase-field simulation and molecular dynamics calculations, we show that OH surface terminations on the Ti <subscript>3</subscript> C <subscript>2</subscript> T <subscript>x</subscript> nanosheets offer hydrogen bonding with the fluoropolymer matrix, leading to dipole alignment and enhanced net spontaneous polarization of the polymer-ceramic composites. We then translated this interfacial bonding strategy into electrospinning to boost the piezoelectric response of samarium doped Pb (Mg <subscript>1/3</subscript> Nb <subscript>2/3</subscript> )O <subscript>3</subscript> -PbTiO <subscript>3</subscript> /polyvinylidene fluoride composite nanofibers by 160% via Ti <subscript>3</subscript> C <subscript>2</subscript> T <subscript>x</subscript> nanosheets inclusion. With excellent piezoelectric and mechanical attributes, the as-electrospun piezoelectric nanofibers can be easily integrated into the conventional shoe insoles to form a foot sensor network for all-around gait patterns monitoring, walking habits identification and Metatarsalgi prognosis. This work utilizes the interfacial coupling mechanism of intermolecular anchoring as a strategy to develop high-performance piezoelectric composites for wearable electronics.
(© 2022. The Author(s).)