Treffer: High-performance piezoelectric composites via β phase programming.
Adv Mater. 2021 Jan;33(3):e2006093. (PMID: 33274802)
Phys Chem Chem Phys. 2015 Apr 21;17(15):9997-10003. (PMID: 25785395)
Nat Commun. 2022 Mar 16;13(1):1391. (PMID: 35296663)
Nature. 2020 Jan;577(7790):350-354. (PMID: 31942055)
Science. 2021 Jun 11;372(6547):. (PMID: 34112665)
Nat Mater. 2018 Apr;17(4):349-354. (PMID: 29555999)
Nature. 2018 Oct;562(7725):96-100. (PMID: 30283102)
iScience. 2020 Jul 24;23(7):101286. (PMID: 32622264)
Science. 2019 Apr 19;364(6437):264-268. (PMID: 31000659)
Nat Commun. 2019 Apr 23;10(1):1843. (PMID: 31015446)
J Phys Chem B. 2012 Jan 19;116(2):794-801. (PMID: 22172028)
Chem Soc Rev. 2022 May 10;51(9):3380-3435. (PMID: 35352069)
Nat Commun. 2020 May 11;11(1):2351. (PMID: 32393749)
ACS Nano. 2018 Apr 24;12(4):3369-3377. (PMID: 29624367)
Nat Mater. 2020 Nov;19(11):1169-1174. (PMID: 32601482)
Phys Chem Chem Phys. 2015 Jan 14;17(2):1368-78. (PMID: 25424552)
Chem Rev. 2022 Feb 9;122(3):3259-3291. (PMID: 34939791)
Sci Rep. 2018 Jan 10;8(1):378. (PMID: 29321656)
Nat Commun. 2020 Feb 25;11(1):1030. (PMID: 32098958)
ACS Appl Mater Interfaces. 2018 Dec 5;10(48):41070-41075. (PMID: 30398047)
Adv Mater. 2018 Jan;30(2):. (PMID: 29164775)
Small Methods. 2022 Feb;6(2):e2101051. (PMID: 35174985)
Nature. 2008 Feb 14;451(7180):809-13. (PMID: 18273015)
Nat Commun. 2019 Oct 18;10(1):4535. (PMID: 31628311)
Adv Mater. 2021 Sep;33(35):e2101262. (PMID: 34240473)
Adv Mater. 2019 May;31(21):e1807722. (PMID: 30924237)
Science. 1983 Jun 10;220(4602):1115-21. (PMID: 17818472)
ACS Appl Mater Interfaces. 2019 Oct 16;11(41):38177-38189. (PMID: 31580638)
Small. 2022 Apr;18(15):e2104472. (PMID: 35187776)
Weitere Informationen
Polymer-ceramic piezoelectric composites, combining high piezoelectricity and mechanical flexibility, have attracted increasing interest in both academia and industry. However, their piezoelectric activity is largely limited by intrinsically low crystallinity and weak spontaneous polarization. Here, we propose a Ti <subscript>3</subscript> C <subscript>2</subscript> T <subscript>x</subscript> MXene anchoring method to manipulate the intermolecular interactions within the all-trans conformation of a polymer matrix. Employing phase-field simulation and molecular dynamics calculations, we show that OH surface terminations on the Ti <subscript>3</subscript> C <subscript>2</subscript> T <subscript>x</subscript> nanosheets offer hydrogen bonding with the fluoropolymer matrix, leading to dipole alignment and enhanced net spontaneous polarization of the polymer-ceramic composites. We then translated this interfacial bonding strategy into electrospinning to boost the piezoelectric response of samarium doped Pb (Mg <subscript>1/3</subscript> Nb <subscript>2/3</subscript> )O <subscript>3</subscript> -PbTiO <subscript>3</subscript> /polyvinylidene fluoride composite nanofibers by 160% via Ti <subscript>3</subscript> C <subscript>2</subscript> T <subscript>x</subscript> nanosheets inclusion. With excellent piezoelectric and mechanical attributes, the as-electrospun piezoelectric nanofibers can be easily integrated into the conventional shoe insoles to form a foot sensor network for all-around gait patterns monitoring, walking habits identification and Metatarsalgi prognosis. This work utilizes the interfacial coupling mechanism of intermolecular anchoring as a strategy to develop high-performance piezoelectric composites for wearable electronics.
(© 2022. The Author(s).)