Result: Towards a Visualizable, De-identified Synthetic Biomarker of Human Movement Disorders.

Title:
Towards a Visualizable, De-identified Synthetic Biomarker of Human Movement Disorders.
Authors:
Hu H; University of British Columbia, Department of Psychiatry, Kinsmen Laboratory of Neurological Research, Detwiller Pavilion, Vancouver, BC, Canada.; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada., Xiao D; University of British Columbia, Department of Psychiatry, Kinsmen Laboratory of Neurological Research, Detwiller Pavilion, Vancouver, BC, Canada.; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada., Rhodin H; Department of Computer Science, University of British Columbia, Vancouver, BC, Canada., Murphy TH; University of British Columbia, Department of Psychiatry, Kinsmen Laboratory of Neurological Research, Detwiller Pavilion, Vancouver, BC, Canada.; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada.
Source:
Journal of Parkinson's disease [J Parkinsons Dis] 2022 Aug 27; Vol. 1 (-1), pp. 2085-2096.
Publication Type:
Journal Article; Research Support, Non-U.S. Gov't
Language:
English
Journal Info:
Publisher: SAGE Publications Country of Publication: Netherlands NLM ID: 101567362 Publication Model: Print Cited Medium: Internet ISSN: 1877-718X (Electronic) Linking ISSN: 18777171 NLM ISO Abbreviation: J Parkinsons Dis Subsets: MEDLINE
Imprint Name(s):
Publication: 2024- : [Thousand Oaks, CA] : SAGE Publications
Original Publication: Amsterdam : IOS Press
References:
Adv Neural Inf Process Syst. 2018 Dec;31:. (PMID: 33623354)
IEEE Trans Inf Technol Biomed. 2012 May;16(3):478-87. (PMID: 22231198)
IEEE Trans Pattern Anal Mach Intell. 2014 Jul;36(7):1325-39. (PMID: 26353306)
Sensors (Basel). 2020 Oct 14;20(20):. (PMID: 33066691)
J Med Syst. 2018 Feb 5;42(3):53. (PMID: 29404692)
Mov Disord Clin Pract. 2016 Jul 18;3(6):538-547. (PMID: 30363567)
Mov Disord. 2016 Sep;31(9):1314-26. (PMID: 27501026)
Front Artif Intell. 2020 Sep 24;3:507973. (PMID: 33733193)
J Parkinsons Dis. 2021;11(s1):S83-S93. (PMID: 33682727)
Mov Disord. 2015 Jan;30(1):80-9. (PMID: 25488260)
Sensors (Basel). 2020 Dec 28;21(1):. (PMID: 33379174)
Gait Posture. 2014 Apr;39(4):1062-8. (PMID: 24560691)
Parkinsons Dis. 2018 Sep 27;2018:5830364. (PMID: 30363689)
Sensors (Basel). 2019 Oct 06;19(19):. (PMID: 31590465)
Science. 2019 Mar 22;363(6433):1287-1289. (PMID: 30898923)
Nat Methods. 2022 May;19(5):620-627. (PMID: 35545713)
Arch Neurol. 2011 Feb;68(2):165. (PMID: 20937936)
JAMA. 2014 Apr 23-30;311(16):1670-83. (PMID: 24756517)
Annu Int Conf IEEE Eng Med Biol Soc. 2009;2009:2462-5. (PMID: 19964961)
IEEE Trans Pattern Anal Mach Intell. 2021 Jan;43(1):172-186. (PMID: 31331883)
IEEE Trans Pattern Anal Mach Intell. 2013 Dec;35(12):2878-90. (PMID: 24136428)
Mov Disord. 2008 Nov 15;23(15):2129-70. (PMID: 19025984)
Mov Disord Clin Pract. 2016 Dec 26;4(3):290-297. (PMID: 30868095)
J Neurol Neurosurg Psychiatry. 2008 Apr;79(4):368-76. (PMID: 18344392)
NPJ Digit Med. 2020 Jan 17;3:6. (PMID: 31970291)
Nat Biotechnol. 2022 Apr;40(4):480-487. (PMID: 34373643)
Nat Neurosci. 2018 Sep;21(9):1281-1289. (PMID: 30127430)
Neurology. 2016 Feb 9;86(6):566-76. (PMID: 26764028)
Sensors (Basel). 2020 Sep 10;20(18):. (PMID: 32927816)
Nat Methods. 2021 Apr;18(4):378-381. (PMID: 33820989)
Med Image Comput Comput Assist Interv. 2020 Oct;12263:637-647. (PMID: 33103164)
Eur J Neurol. 2002 Nov;9 Suppl 3:23-30. (PMID: 12464118)
IEEE J Biomed Health Inform. 2022 Mar;26(3):1164-1176. (PMID: 34310333)
Neuron. 2020 Oct 14;108(1):44-65. (PMID: 33058765)
J Clin Neurosci. 2019 Mar;61:174-179. (PMID: 30385169)
Med Image Anal. 2021 Oct;73:102179. (PMID: 34340101)
Grant Information:
FDN-143209 Canada CIHR; PJT-180631 Canada CIHR
Contributed Indexing:
Keywords: Artificial intelligence; Parkinson’s disease; computer-assisted diagnosis; computer-assisted image processing; movement disorders; neural networks (computer)
Substance Nomenclature:
0 (Biomarkers)
Entry Date(s):
Date Created: 20220904 Date Completed: 20220908 Latest Revision: 20230904
Update Code:
20250114
PubMed Central ID:
PMC10473142
DOI:
10.3233/JPD-223351
PMID:
36057831
Database:
MEDLINE

Further Information

Human motion analysis has been a common thread across modern and early medicine. While medicine evolves, analysis of movement disorders is mostly based on clinical presentation and trained observers making subjective assessments using clinical rating scales. Currently, the field of computer vision has seen exponential growth and successful medical applications. While this has been the case, neurology, for the most part, has not embraced digital movement analysis. There are many reasons for this including: the limited size of labeled datasets, accuracy and nontransparent nature of neural networks, and potential legal and ethical concerns. We hypothesize that a number of opportunities are made available by advancements in computer vision that will enable digitization of human form, movements, and will represent them synthetically in 3D. Representing human movements within synthetic body models will potentially pave the way towards objective standardized digital movement disorder diagnosis and building sharable open-source datasets from such processed videos. We provide a perspective of this emerging field and describe how clinicians and computer scientists can navigate this new space. Such digital movement capturing methods will be important for both machine learning-based diagnosis and computer vision-aided clinical assessment. It would also supplement face-to-face clinical visits and be used for longitudinal monitoring and remote diagnosis.