Treffer: Deep learning-based framework for slide-based histopathological image analysis.
IEEE Trans Med Imaging. 2018 Jul;37(7):1641-1652. (PMID: 29969415)
Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit. 2016 Jun-Jul;2016:2424-2433. (PMID: 27795661)
Proc Natl Acad Sci U S A. 2018 Mar 27;115(13):E2970-E2979. (PMID: 29531073)
Nat Rev Clin Oncol. 2019 Nov;16(11):703-715. (PMID: 31399699)
Methods. 2020 Jul 1;179:3-13. (PMID: 32442672)
PLoS Comput Biol. 2020 Feb 5;16(2):e1007313. (PMID: 32023239)
J Pathol Inform. 2019 Mar 08;10:9. (PMID: 30984469)
Sci Rep. 2020 Jan 30;10(1):1504. (PMID: 32001752)
Sci Rep. 2020 Jun 9;10(1):9297. (PMID: 32518413)
Front Bioeng Biotechnol. 2019 Apr 02;7:53. (PMID: 31001524)
Nat Biomed Eng. 2021 Jun;5(6):555-570. (PMID: 33649564)
J Healthc Eng. 2021 Nov 1;2021:8396438. (PMID: 34760142)
Comput Med Imaging Graph. 2017 Apr;57:50-61. (PMID: 27373749)
Cancers (Basel). 2020 Dec 09;12(12):. (PMID: 33316873)
PLoS One. 2017 Mar 29;12(3):e0174489. (PMID: 28355298)
Sci Rep. 2020 Feb 21;10(1):3217. (PMID: 32081956)
IEEE Trans Med Imaging. 2022 Mar;41(3):702-714. (PMID: 34705638)
Nat Med. 2019 Aug;25(8):1301-1309. (PMID: 31308507)
Micron. 2018 Nov;114:42-61. (PMID: 30096632)
Pac Symp Biocomput. 2021;26:285-296. (PMID: 33691025)
Front Neurosci. 2020 Feb 21;14:27. (PMID: 32153349)
Sci Rep. 2020 Nov 2;10(1):18802. (PMID: 33139755)
PLoS One. 2017 Jan 11;12(1):e0169875. (PMID: 28076381)
JAMA Netw Open. 2019 Nov 1;2(11):e1914645. (PMID: 31693124)
Sci Rep. 2021 Nov 23;11(1):23032. (PMID: 34815456)
Front Mol Biosci. 2021 Jan 28;7:614258. (PMID: 33585563)
J Digit Imaging. 2019 Aug;32(4):605-617. (PMID: 30756265)
Weitere Informationen
Digital pathology coupled with advanced machine learning (e.g., deep learning) has been changing the paradigm of whole-slide histopathological images (WSIs) analysis. Major applications in digital pathology using machine learning include automatic cancer classification, survival analysis, and subtyping from pathological images. While most pathological image analyses are based on patch-wise processing due to the extremely large size of histopathology images, there are several applications that predict a single clinical outcome or perform pathological diagnosis per slide (e.g., cancer classification, survival analysis). However, current slide-based analyses are task-dependent, and a general framework of slide-based analysis in WSI has been seldom investigated. We propose a novel slide-based histopathology analysis framework that creates a WSI representation map, called HipoMap, that can be applied to any slide-based problems, coupled with convolutional neural networks. HipoMap converts a WSI of various shapes and sizes to structured image-type representation. Our proposed HipoMap outperformed existing methods in intensive experiments with various settings and datasets. HipoMap showed the Area Under the Curve (AUC) of 0.96±0.026 (5% improved) in the experiments for lung cancer classification, and c-index of 0.787±0.013 (3.5% improved) and coefficient of determination ([Formula: see text]) of 0.978±0.032 (24% improved) in survival analysis and survival prediction with TCGA lung cancer data respectively, as a general framework of slide-based analysis with a flexible capability. The results showed significant improvement comparing to the current state-of-the-art methods on each task. We further discussed experimental results of HipoMap as pathological viewpoints and verified the performance using publicly available TCGA datasets. A Python package is available at https://pypi.org/project/hipomap , and the package can be easily installed using Python PIP. The open-source codes in Python are available at: https://github.com/datax-lab/HipoMap .
(© 2022. The Author(s).)